Statistics Netherlands
Division of Methodology and Quality
Department of Methodology
P.O. Box 4000

2270 JM Voorburg
The Netherlands

A Survey of Matrix Differentiation*

Kees Zeelenberg

*I wish to thank Anco Hundepool for converting the manuscript from PCWrite to ${ }^{\text {AT }} \mathrm{E} X$.
The views expressed in this paper are those of the author and do not necessarily reflect the policies of Statistics Netherlands.

Contents

Abstract 1
1 Introduction 1
2 Preliminaries 1
2.1 The trace 1
2.2 The Kronecker product 2
2.3 The vec-operator 3
2.4 The commutation matrix 4
2.5 The duplication matrix 5
2.6 Diagonality 6
3 First-order differentiation 7
3.1 Differentiability of vector functions 7
3.2 Differentiability of matrix functions 8
3.3 Chain rule 8
3.4 Properties of differentials 9
3.5 Examples 9
4 Second-order differentiation 12
4.1 Twice-differentiability 12
4.2 The second differential 12
4.3 Matrix functions 13
4.4 Examples 14
5 Linearization of the regression estimator 17
6 Maximum-likelihood estimation of the multivariate linear model 18
6.1 Introduction 18
6.2 The model 18
6.3 First-order conditions 19
6.4 The Hessian matrix 19
6.5 The information matrix 20
7 Maximum-likelihood estimation of the factor-analysis model 21
7.1 Introduction 21
7.2 The model 21
7.3 First-order conditions 22
7.4 The Hessian matrix 23
7.5 The information matrix 24

A Survey of Matrix Differentiation

An summary of first and second-order differentiation of matrix functions is given. As example, these techniques are applied to maximum-likelihood estimation of the multivariate linear model and the factor-analysis model.

Keywords: matrix differentiation, multivariate linear model, factor analysis, regression estimator
AEA-code: C30
Keywords:

1 Introduction

In this paper an overview of matrix differentiation techniques and some applications is given. In section 2 we collect some matrix results from Magnus (1988). Sections 3 and 4, drawn from Magnus and Neudecker (1988), treat first-order differentiation, respectively second-order differentiation. Section 5 gives an application to maximumlikelihood estimation of the multivariate linear model, section 6 to maximum-likelihood estimation of the factor-analysis model, and section 7 to linearization of the regression estimator.

2 Preliminaries

This section brings together several results from matrix analysis that are useful for matrix differentiation techniques; see Magnus (1988) for much more details and proofs. We use several operators such as tr (trace of a matrix) and vec (vector of a matrix). These operators have the highest priority, e.g. $\alpha \operatorname{tr}(A)$ means: $\alpha \times[\operatorname{tr}(A)]$. If the operator is followed by a space then it extends until the next space, closing bracket, comma, or period, e.g. $\operatorname{tr} A B$ means: $\operatorname{tr}(A B)$.

2.1 The trace

Let A and B be $n \times n$-matrices. The trace of a matrix is defined as the sum of its diagonal elements:

$$
\begin{equation*}
\operatorname{tr} A=\sum_{i=1}^{n} a_{i i} \tag{2.1}
\end{equation*}
$$

The trace has the following properties:

$$
\begin{equation*}
\operatorname{tr}(A+B)=\operatorname{tr} A+\operatorname{tr} B \tag{2.2}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{tr}\left(A^{\prime}\right)=\operatorname{tr} A \tag{2.3}\\
\operatorname{tr} A B=\operatorname{tr} B A=\operatorname{tr} A^{\prime} B^{\prime}=\operatorname{tr} B^{\prime} A^{\prime} \tag{2.4}\\
\operatorname{tr} \alpha A=\alpha \operatorname{tr} A \tag{2.5}
\end{gather*}
$$

2.2 The Kronecker product

Let A be an $m \times n$-matrix and B a $p \times q$-matrix. The Kronecker product of A and B is the $m p \times n q$-matrix

$$
A \otimes B=\left(\begin{array}{cccc}
a_{11} B & a_{12} B & \ldots & a_{1 n} B \tag{2.6}\\
a_{21} B & a_{22} B & \ldots & a_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} B & a_{m 2} B & \ldots & a_{m n} B
\end{array}\right)
$$

The Kronecker product has the same priority as the ordinary product. For example, $A \otimes B+C=(A \otimes B)+C, A B \otimes C=(A B) \otimes C$. Note that $a_{i j} b_{r s}=(A \otimes B)_{(i-1) p+r,(j-1) q+s}(i=$ $1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q)$.

Let C and D be matrices, x and y vectors, and α a scalar. The Kronecker product has the following properties (it is assumed that any product and sum exist):

$$
\begin{gather*}
(A \otimes B)^{\prime}=A^{\prime} \otimes B^{\prime}, \tag{2.7}\\
(A+B) \otimes(C+D)=A \otimes C+A \otimes D+B \otimes C+B \otimes D, \tag{2.8}\\
(A \otimes B)(C \otimes D)=A C \otimes B D \tag{2.9}\\
\alpha A=\alpha \otimes A=A \otimes \alpha=A \alpha \tag{2.10}\\
x \otimes y^{\prime}=x y^{\prime}=y^{\prime} \otimes x \tag{2.11}
\end{gather*}
$$

If A and B are square of order m respectively n, then

$$
\begin{gather*}
\operatorname{tr}(A \otimes B)=(\operatorname{tr} A)(\operatorname{tr} B) \tag{2.12}\\
(A \otimes B)^{-1}=A^{-1} \otimes B^{-1} \tag{2.13}\\
(A \otimes B)^{+}=A^{+} \otimes B^{+} \tag{2.14}
\end{gather*}
$$

with $\mathrm{a}+$ as superscript denoting the Moore-Penrose inverse,

$$
\begin{equation*}
r(A \otimes B)=r(A) r(B) \tag{2.15}
\end{equation*}
$$

if A is an $m \times m$-matrix and B and $p \times p$-matrix, then

$$
\begin{equation*}
|A \otimes B|=|A|^{p}|B|^{m} \tag{2.16}
\end{equation*}
$$

if λ_{i} are the characteristic values $(i=1,2, \ldots, m)$ of A with characteristic vectors x_{i} and $\mu_{j}(j=1,2, \ldots, p)$ the characteristic values of B, then the characteristic values of $A \otimes B$ are $\lambda_{i} \mu_{j}$ with characteristic values $x_{i} \otimes y_{j}$.

2.3 The vec-operator

Let A be an $m \times n$-matrix and a_{i} the i-th column of A. Then vec A is the $m n$-vector defined by

$$
\operatorname{vec} A=\left(\begin{array}{c}
a_{1} \tag{2.17}\\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right)
$$

Note that $a_{i j}=(\operatorname{vec} A)_{(j-1) m+i}$.
Let A, B, C, and D be matrices, and x and y vectors. The vec-operator has the following properties (it is assumed that any product exists):

$$
\begin{gather*}
\operatorname{vec} x^{\prime}=\operatorname{vec} x=x, \tag{2.18}\\
\operatorname{vec} x y^{\prime}=y \otimes x, \tag{2.19}\\
\operatorname{tr} A B=\left(\operatorname{vec} A^{\prime}\right)^{\prime}(\operatorname{vec} B), \tag{2.20}\\
\operatorname{tr} A B C D=\left(\operatorname{vec} D^{\prime}\right)^{\prime}\left(C^{\prime} \otimes A\right)(\operatorname{vec} B)=(\operatorname{vec} D)^{\prime}\left(A \otimes C^{\prime}\right)\left(\operatorname{vec} B^{\prime}\right), \tag{2.21}\\
\operatorname{vec} A B C=\left(C^{\prime} \otimes A\right)(\operatorname{vec} B), \tag{2.22}\\
A B x=\left(x^{\prime} \otimes A\right)(\operatorname{vec} B)=\left(A \otimes x^{\prime}\right)\left(\operatorname{vec} B^{\prime}\right) . \tag{2.23}
\end{gather*}
$$

If A is an $m \times n$-matrix and B an $n \times q$-matrix, then

$$
\begin{equation*}
\operatorname{vec} A B=\left(B^{\prime} \otimes I_{m}\right)(\operatorname{vec} A)=\left(B^{\prime} \otimes A\right)\left(\operatorname{vec} I_{n}\right)=\left(I_{q} \otimes A\right)(\operatorname{vec} B) \tag{2.24}
\end{equation*}
$$

If A, B, and V are square matrices of the same order and V is symmetric, then

$$
\begin{equation*}
(\operatorname{vec} V)^{\prime}(A \otimes B)(\operatorname{vec} V)=(\operatorname{vec} V)^{\prime}(B \otimes A)(\operatorname{vec} V) \tag{2.25}
\end{equation*}
$$

If x is an m-vector and y an n-vector, then from (2.19) and (2.24) we have

$$
\begin{equation*}
x \otimes y=\operatorname{vec}\left(y x^{\prime}\right)=\left(I_{m} \otimes y\right) x=\left(x \otimes I_{n}\right) y \tag{2.26}
\end{equation*}
$$

Let X be an $m \times n$-matrix, Y a $p \times q$-matrix, A an $n \times q$-matrix, and B an $m \times p$-matrix, such that $(\operatorname{vec} X)(\operatorname{vec} Y)^{\prime}=A \otimes B$. Then

$$
\begin{align*}
& x_{i j} y_{r s}=a_{j s} b_{i r}, \\
& \quad i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q . \tag{2.27}
\end{align*}
$$

Similar formulae hold for matrices with the structure of $(\operatorname{vec} X)(\operatorname{vec} Y)^{\prime}$. An example is the covariance matrix of the vec of a stochastic matrix: if $\operatorname{Var}(\operatorname{vec} X)=\mathrm{E}(\operatorname{vec} X-$ $\mathrm{E} \operatorname{vec} X)(\operatorname{vec} X-\mathrm{E} \operatorname{vec} X)^{\prime}=A \otimes B$, then

$$
\begin{align*}
& \operatorname{cov}\left(x_{i j}, x_{r s}\right)=a_{j s} b_{i r} \\
& \quad i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q \tag{2.28}
\end{align*}
$$

Another example is the matrix with second partial derivatives of a real-valued matrix function: if $\partial^{2} \phi /\left(\partial(\operatorname{vec} X) \partial(\operatorname{vec} X)^{\prime}\right)=A \otimes B$, then

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial x_{i j} \partial x_{r s}}=a_{j s} b_{i r}, \\
& \qquad i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q \tag{2.29}
\end{align*}
$$

see section 4.4.

2.4 The commutation matrix

The commutation matrix is the permutation matrix that transforms the vec of a matrix into the vec of the transpose of that matrix:

$$
\begin{equation*}
K_{m n}(\operatorname{vec} A)=\operatorname{vec} A^{\prime} \tag{2.30}
\end{equation*}
$$

where A is an $m \times n$-matrix and $K_{m n}$ is the $m n \times m n$-commutation matrix for matrices of order (m, n). Note that vec A^{\prime} is the vector with the rows of A stacked; it is sometimes denoted as $\overline{\operatorname{vec}}(A)$.

The commutation matrix $K_{m m}$ will be denoted by K_{m}. Since $K_{m n}$ is a permutation matrix, it is orthogonal and thus

$$
\begin{equation*}
K_{m n}^{-1}=K_{m n}^{\prime}=K_{n m} . \tag{2.31}
\end{equation*}
$$

Also

$$
\begin{equation*}
K_{m 1}=K_{1 m}=I_{m} . \tag{2.32}
\end{equation*}
$$

The commutation matrix derives its name from the fact that it reverses ('commutes') the order of Kronecker products:

$$
\begin{equation*}
K_{p m}(A \otimes B)=(B \otimes A) K_{q n}, \tag{2.33}
\end{equation*}
$$

where B is a $p \times q$-matrix. The commutation matrix can be used to write the vec of a Kronecker product as the Kronecker product of the vec's:

$$
\begin{equation*}
\operatorname{vec}(A \otimes B)=\left(I_{n} \otimes K_{q m} \otimes I_{p}\right)[(\operatorname{vec} A) \otimes(\operatorname{vec} B)] \tag{2.34}
\end{equation*}
$$

An explicit expression for the commutation matrix is

$$
\begin{equation*}
K_{m n}=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(H_{i j} \otimes H_{i j}^{\prime}\right), \tag{2.35}
\end{equation*}
$$

where $H_{i j}$ is the $m \times n$-matrix with 1 as element (i, j) and 0 elsewhere.
Let X be an $m \times n$-matrix, Y a $p \times q$-matrix, A an $m \times q$-matrix, and B an $n \times p$-matrix, such that $(\operatorname{vec} X)(\operatorname{vec} Y)^{\prime}=K_{n m}(A \otimes B)$. Then

$$
x_{i j} y_{r s}=a_{i s} b_{j r},
$$

$$
\begin{equation*}
i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q . \tag{2.36}
\end{equation*}
$$

Similar formulae hold for matrices with the structure of $(\operatorname{vec} X)(\operatorname{vec} Y)^{\prime}$. An example is the covariance matrix of the vec of a stochastic matrix: if $\operatorname{Var}(\operatorname{vec} X)=\mathrm{E}(\operatorname{vec} X-$ $\mathrm{E} \operatorname{vec} X)(\operatorname{vec} X-\mathrm{E} \operatorname{vec} X)^{\prime}=K_{n m}(A \otimes B)$, then

$$
\begin{align*}
& \operatorname{cov}\left(x_{i j}, x_{r s}\right)=a_{i s} b_{j r} \\
& \quad i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q \tag{2.37}
\end{align*}
$$

Another example is the matrix with second partial derivatives of a real-valued matrix function: if $\partial^{2} \phi /\left(\partial(\operatorname{vec} X) \partial(\operatorname{vec} X)^{\prime}\right)=K_{n m}(A \otimes B)$, then

$$
\begin{align*}
& \frac{\partial^{2} \phi}{\partial x_{i j} \partial x_{r s}}=a_{i s} b_{j r}, \\
& \qquad i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p ; s=1,2, \ldots, q ; \tag{2.38}
\end{align*}
$$

see section 4.4.

2.5 The duplication matrix

Let A be a $n \times n$-matrix and let $\mathrm{v}(A)$ denote the $\frac{1}{2} n(n+1)$-vector that is obtained from $\operatorname{vec} A$ by deleting all supradiagonal elements of A. If A is symmetric then $\mathrm{v}(A)$ contains only the distinct elements of A. The duplication matrix D_{n} is the $n^{2} \times \frac{1}{2}(n+1)$-matrix that transforms, for symmetric $A, \mathrm{v}(A)$ into $\operatorname{vec} A$:

$$
\begin{equation*}
D_{n} \mathrm{v}(A)=\operatorname{vec} A \tag{2.39}
\end{equation*}
$$

The Moore-Penrose inverse of the duplication matrix is

$$
\begin{equation*}
D_{n}^{+}=\left(D_{n}^{\prime} D_{n}\right)^{-1} D_{n}^{\prime} \tag{2.40}
\end{equation*}
$$

It is easily seen that for symmetric A :

$$
\begin{equation*}
\mathrm{v}(A)=D_{n}^{+} \operatorname{vec} A \tag{2.41}
\end{equation*}
$$

An explicit expression for the duplication matrix is

$$
\begin{equation*}
D_{n}=\sum_{i=j}^{n} \sum_{j=1}^{n}\left(\operatorname{vec} T_{i j}\right) u_{i j}^{\prime} \tag{2.42}
\end{equation*}
$$

where $T_{i i}=E_{i i}, T_{i j}=E_{i j}+E_{j i}(i \neq j), E_{i j}$ is the $n \times n$-matrix with 1 as element (i, j) and 0 elsewhere, and $u_{i j}=\mathrm{v}\left(E_{i j}\right)$ (note that $E_{i j}=e_{i} e_{j}^{\prime}$). Also

$$
\begin{gather*}
D_{n} D_{n}^{+}=\frac{1}{2}\left(I_{n^{2}}+K_{n}\right), \tag{2.43}\\
D_{n}^{+} D_{n}=I_{\frac{1}{2} n(n+1)}, \tag{2.44}
\end{gather*}
$$

and

$$
\begin{equation*}
\left[D_{n}^{\prime}(A \otimes A) D_{n}\right]^{-1}=D_{n}^{+}\left(A^{-1} \otimes A^{-1}\right) D_{n}^{+\prime} \tag{2.45}
\end{equation*}
$$

The $n^{2} \times n^{2}$-matrix $\frac{1}{2}\left(I_{n^{2}}+K_{n}\right)$ will be denoted by N_{n}, and plays an important part in distribution theory, especially normal distribution theory. There holds

$$
\begin{gather*}
N_{n} \operatorname{vec} A=\operatorname{vec} \frac{1}{2}\left(A+A^{\prime}\right), \tag{2.46}\\
N_{n}(A \otimes A) N_{n}=N_{n}(A \otimes A)=(A \otimes A) N_{n}, \tag{2.47}
\end{gather*}
$$

and

$$
\begin{equation*}
N_{n}=N_{n}^{\prime}=N_{n}^{2}, \tag{2.48}
\end{equation*}
$$

so that N_{n} is orthogonal and idempotent.

2.6 Diagonality

Let A be a square $n \times n$-matrix and define $\mathrm{w}(A)$ as the vector containing just the diagonal elements of A :

$$
\begin{equation*}
\mathrm{w}(A)=\left(a_{11}, a_{22}, \ldots, a_{n n}\right)^{\prime} \tag{2.49}
\end{equation*}
$$

We define the $n \times n^{2}$-matrix G_{n} as the matrix that transforms for diagonal $A, \mathrm{w}(A)$ into $\operatorname{vec}(A)$:

$$
\begin{equation*}
G_{n}^{\prime} w(A)=\operatorname{vec} A \tag{2.50}
\end{equation*}
$$

An explicit expression for G_{n} is

$$
\begin{equation*}
G_{n}=\sum_{i=1}^{n} e_{i}\left(\operatorname{vec} E_{i i}\right)^{\prime}, \tag{2.51}
\end{equation*}
$$

where e_{i} is the n-vector with 1 as element i and 0 elsewhere, and $E_{i i}$ is the $n \times n$-matrix with 1 as element (i, i) and 0 elsewhere. It can be shown that

$$
\begin{gather*}
G_{n} K_{n}=G_{n} N_{n}=G_{n}, \\
G_{n} G_{n}^{\prime}=I_{n}, \tag{2.52}
\end{gather*}
$$

and

$$
\begin{equation*}
G_{n}^{+}=G_{n}^{\prime} . \tag{2.53}
\end{equation*}
$$

The matrix G_{n} eliminates from vec A the off-diagonal elements, since for every square matrix A,

$$
\begin{equation*}
G_{n}(\operatorname{vec} A)=\mathrm{w}(A) \tag{2.54}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{n}^{\prime} \mathrm{w}(A)=G_{n}^{\prime} G_{n}(\operatorname{vec} A)=\operatorname{vec}(\operatorname{dg} A), \tag{2.55}
\end{equation*}
$$

where $\operatorname{dg} A$ is the diagonal matrix containing the diagonal elements of A. The matrix G_{n} converts a Kronecker product into a Hadamard product:

$$
\begin{equation*}
G_{n}(A \otimes B) G_{n}^{\prime}=A \odot B, \tag{2.56}
\end{equation*}
$$

where A and B are matrices of the same size and the Hadamard product of two matrices is defined as their element-wise product, i.e. $(A \odot B)_{i j}=a_{i j} b_{i j}$.

Let X be an $m \times n$-matrix, y a p-vector, A an $n \times p$-matrix and B an $m \times p$-matrix, such that $(\operatorname{vec} X) y^{\prime}=(A \otimes B) G_{p}^{\prime}$. Then

$$
\begin{equation*}
x_{i j} y_{r}=a_{j r} b_{i r}, i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p \tag{2.57}
\end{equation*}
$$

Similar formulae hold for other matrices with the same structure as $(\operatorname{vec} X) y^{\prime}$. An example is the covariance matrix of a stochastic vector and the vec of a stochastic matrix: if $\operatorname{Cov}(\operatorname{vec} X, y)=\mathrm{E}(\operatorname{vec} X-\mathrm{E} \operatorname{vec} X)(y-\mathrm{E} y)^{\prime}=(A \otimes B) G_{p}^{\prime}$, then

$$
\begin{equation*}
\operatorname{cov}\left(x_{i j}, y_{r}\right)=a_{j r} b_{i r}, i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p \tag{2.58}
\end{equation*}
$$

Another example is the matrix with second partial cross derivatives of a vector and a real-valued matrix function: if $\partial^{2} \phi /\left(\partial(\operatorname{vec} X) \partial(y)^{\prime}\right)=(A \otimes B) G_{p}^{\prime}$, then

$$
\begin{equation*}
\frac{\partial^{2} \phi}{\partial x_{i j} \partial y_{r}}=a_{j r} b_{i r}, i=1,2, \ldots, m ; j=1,2, \ldots, n ; r=1,2, \ldots, p \tag{2.59}
\end{equation*}
$$

see section 4.4.

3 First-order differentiation

3.1 Differentiability of vector functions

Let f be a function from an open set $S \subset \mathbb{R}^{m}$ to \mathbb{R}^{n}; let $x^{0} \in S$ and $u \in \mathbb{R}^{m}$ such that $x^{0}+u \in S$. The function f is differentiable at x^{0} if there exists a real $n \times m$-matrix $A_{x^{0}}$, depending on x^{0} but not on u, such that

$$
\begin{equation*}
f\left(x^{0}+u\right)=f\left(x^{0}\right)+A_{x^{0}} u+o(u), \tag{3.1}
\end{equation*}
$$

where $o(u)$ is a function such that $\lim _{|u| \rightarrow 0}|o(u)| /|u|=0$. The matrix $A_{x^{0}}$ is called the (first) derivative of f at x^{0}; it is denoted by $\mathrm{D} f\left(x^{0}\right)$ or by $\left.\partial f / \partial x^{\prime}\right\rfloor_{x=x^{0}}$, and is called the Jacobian matrix of f at x^{0}, and if $m=n$, its determinant is called the Jacobian of f. The Jacobian matrix $\mathrm{D} f$ is equal to the matrix of partial derivatives, i.e. $\mathrm{D} f(x)_{i j}=\partial f_{i} / \partial x_{j}$. The linear function $\mathrm{d} f_{x^{0}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ defined by $\mathrm{d} f_{x^{0}}(u)=A_{x^{0}} \times u$ is called the (first) differential of f at x^{0}; instead of u we often write $\mathrm{d} x$, so that: $\mathrm{d} f=A_{x^{0}} \times(\mathrm{d} x)$. Alternatively if A is a matrix such that $\mathrm{d} f=A \mathrm{~d} x$ then A is the derivative of f at x^{0} and contains the partial derivatives. This one-to-one relation between differentials and derivatives is very useful, since differentials are relatively easy to manipulate.

From (3.1) we see that the differential corresponds to the linear part of the function, which can also be written as

$$
y-y^{0}=A_{x^{0}}\left(x-x^{0}\right),
$$

where $y^{0}=f\left(x^{0}\right)$. Therefore the differential of a function is the linearization of the function: it is the equation of the hyperplane through the origin that is parallel to the hyperplane tangent to the graph of f at x^{0}; so the linearized function can be written as

$$
\begin{equation*}
f(x) \doteq f\left(x^{0}\right)+A_{x^{0}}\left(x-x^{0}\right) . \tag{3.2}
\end{equation*}
$$

3.2 Differentiability of matrix functions

A matrix function F from an open set $S \subset \mathbb{R}^{m \times n}$ to $\mathbb{R}^{p \times q}$ is differentiable if vec F is differentiable, i.e. if there exists a real $p q \times m n$-matrix A, depending on X^{0}, such that

$$
\begin{equation*}
\operatorname{vec} F\left(X^{0}+U\right)=\operatorname{vec} F\left(X^{0}\right)+A_{X^{0}}(\operatorname{vec} U)+\operatorname{vec} o(U), \tag{3.3}
\end{equation*}
$$

where U is a $p \times q$-matrix such that $X^{0}+U \in S$, and $\lim _{|U| \rightarrow 0}|o(U)| /|U|=0$ with the norm of a matrix X defined by $|X|=\left(\operatorname{tr} X^{\prime} X\right)^{\frac{1}{2}}$. The differential of F at X^{0} is the $m \times n$-matrix function $\mathrm{d} F_{X^{0}}$ defined by vec $\mathrm{d} F_{X^{0}}(U)=A_{X^{0}}(\operatorname{vec} U)$. The $p q \times m n$ matrix $\mathrm{D}(\operatorname{vec} F)$ is called the Jacobian matrix of F at X^{0} and is denoted by $\mathrm{D} F\left(X^{0}\right)$ or by $\left.\partial(\operatorname{vec} F) / \partial(\operatorname{vec} X)^{\prime}\right\rfloor_{X=X^{0}}$.
If either F or X is a scalar then $\mathrm{D} F$ is a vector. It is then useful to define some other matrices that also contain the partial derivatives. If F is a scalar function of a matrix (i.e. $p=q=1$), then we define the $m \times n$-matrix $\partial F(X) / \partial X$ implicitly by

$$
\begin{equation*}
\mathrm{D} F(X)=\left(\operatorname{vec} \frac{\partial F(X)}{\partial X}\right)^{\prime}, \tag{3.4}
\end{equation*}
$$

i.e. $(\partial F / \partial X)_{i j}=\partial F / \partial x_{i j}$. If X is a scalar (i.e. $m=n=1$), then we define the $p \times q$-matrix $\partial F(X) / \partial X$ implicitly by

$$
\begin{equation*}
\mathrm{D} F(X)=\operatorname{vec} \frac{\partial F(X)}{\partial X}, \tag{3.5}
\end{equation*}
$$

i.e. $(\partial F / \partial X)_{i j}=\partial F_{i j} / \partial X$. In all other cases the only useful definition of derivative is the Jacobian matrix ∂ vec $F / \partial(\operatorname{vec} X)^{\prime}$, because only then there exists a general chain rule and the determinant of the derivative equals the Jacobian. Note that if X is a vector (i.e. $n=1$) and F a scalar (i.e. $p=q=1$), then $\mathrm{D} F$ is a row vector and $\partial F / \partial X=(\mathrm{D} F)^{\prime}$ is a column vector.

An explicit expression for the Jacobian matrix is

$$
\begin{equation*}
\mathrm{D} F=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\operatorname{vec} \frac{\partial F}{\partial x_{i j}}\right)\left(\operatorname{vec} H_{i j}\right)^{\prime}, \tag{3.6}
\end{equation*}
$$

where $H_{i j}$ is the $m \times n$-matrix with 1 as element (i, j) and 0 elsewhere. If $n=1$, then (3.6) simplifies to

$$
\begin{equation*}
\mathrm{D} F=\sum_{i=1}^{m}\left(\operatorname{vec} \frac{\partial F}{\partial x_{i}}\right) e_{i}^{\prime}, \tag{3.7}
\end{equation*}
$$

where e_{i} is the m-vector with 1 as element i and 0 elsewhere.

3.3 Chain rule

Let S be an open set in \mathbb{R}^{n} and let $f: S \rightarrow \mathbb{R}^{m}$ be differentiable at a point x^{0} in S. Let T be a subset of \mathbb{R}^{m} such that $f(x) \in T$ for all $x \in S$ and let $g: T \rightarrow \mathbb{R}^{p}$ be differentiable at a point $y^{0}=f\left(x^{0}\right) \in T$. Then the composite function $h=g \circ f: S \rightarrow \mathbb{R}^{p}$ defined by $h(x)=g[f(x)]$ is differentiable at x^{0}, and there holds $\mathrm{D} h\left(x^{0}\right)=\mathrm{D} g\left(y^{0}\right) \mathrm{D} f\left(x^{0}\right)$ and $\mathrm{d} h_{x^{0}}(u)=\mathrm{d} g_{y^{0}}\left[\mathrm{~d} f_{x^{0}}(u)\right]$.

3.4 Properties of differentials

Let A be a matrix of constants, F and G matrix functions, and α a real scalar. Then, assuming that all differentials, products, inverses, etc. exist, we have

$$
\begin{gather*}
\mathrm{d} A=0, \tag{3.8}\\
\mathrm{~d}(\alpha F)=\alpha \mathrm{d} F, \tag{3.9}\\
\mathrm{~d}(F+G)=\mathrm{d} F+\mathrm{d} G, \tag{3.10}\\
\mathrm{~d}(F G)=(\mathrm{d} F) G+F(\mathrm{~d} G), \tag{3.11}\\
\mathrm{d}(F \otimes G)=(\mathrm{d} F) \otimes G+F \otimes(\mathrm{~d} G), \tag{3.12}\\
\mathrm{d}\left(F^{\prime}\right)=(\mathrm{d} F)^{\prime}, \tag{3.13}\\
\mathrm{d}(\operatorname{vec} F)=\operatorname{vec}(\mathrm{d} F), \tag{3.14}\\
\mathrm{d}(\operatorname{tr} F)=\operatorname{tr}(\mathrm{d} F), \tag{3.15}\\
\mathrm{d} F^{-1}=-F^{-1}(\mathrm{~d} F) F^{-1}, \tag{3.16}\\
\mathrm{~d}|F|=\operatorname{tr}\left(F^{\#} \mathrm{~d} F\right), \tag{3.17}
\end{gather*}
$$

where $F^{\#}$ is the adjoint matrix (i.e. the transpose of the matrix with cofactors) of F. In particular, at points where F has full rank:

$$
\begin{equation*}
\mathrm{d}|F|=|F| \operatorname{tr}\left(F^{-1} \mathrm{~d} F\right) . \tag{3.18}
\end{equation*}
$$

The use of differentials makes it unnecessary to remember many matrix derivatives, since they follow easily from the above properties.

Formula (3.16) is easily proved by taking the differential of $F F^{-1}=I$, and rearranging.
As an example of the chain rule we will prove (3.17). Define the function $g: \mathbb{R}^{m \times n} \rightarrow$ \mathbb{R} by $g(Y)=|Y|$. Note that g is a function without restrictions and that all variables $y_{i j}$ are independent. Then $|F|$ is the composite of g and F. Expanding $|Y|$ along the i-th row we get $|Y|=\sum_{j} y_{i j}\left|Y_{i j}\right|$, where $\left|Y_{i j}\right|$ is the cofactor of $y_{i j}$. Since $Y_{i j}$ is independent of $y_{i j}$, there holds $\partial|Y| / \partial y_{i j}=Y_{i j}$ and thus $\mathrm{d}|Y|=\sum_{i} \sum_{j} Y_{i j} \mathrm{~d} y_{i j}=\operatorname{tr}\left(Y^{\#} \mathrm{~d} Y\right)$. By the chain rule we then have $\mathrm{d} F=\operatorname{tr}\left(F^{\#} \mathrm{~d} F\right)$. Note that (3.17) and (3.18) hold independently of any restrictions, such as symmetry, on F.

3.5 Examples

Example 3.1. Some special cases for real functions of one variable are

$$
\begin{align*}
\mathrm{d} x^{n} & =n x^{n-1} \mathrm{~d} x \tag{3.19}\\
\mathrm{~d} e^{x} & =e^{x} \mathrm{~d} x, \tag{3.20}\\
\mathrm{~d} \log x & =\frac{\mathrm{d} x}{x} \quad(x>0) . \tag{3.21}
\end{align*}
$$

Example 3.2. For the real function $f(x, y)=x^{2}+2 x y-y^{2}$ we have

$$
\begin{aligned}
\mathrm{d} f & =\mathrm{d}\left(x^{2}\right)+2 \mathrm{~d}(x y)-\mathrm{d}\left(y^{2}\right)=2 x \mathrm{~d} x+2(y \mathrm{~d} x+x \mathrm{~d} y)-2 y \mathrm{~d} y \\
& =2(x+y) \mathrm{d} x+2(x-y) \mathrm{d} y .
\end{aligned}
$$

Example 3.3. For the real function $f(x, y)=x^{\alpha} y^{\beta} \quad(x>0, y>0)$ we have

$$
\mathrm{d} \log f=\alpha \mathrm{d} \log x+\beta \mathrm{d} \log y .
$$

Example 3.4. (Implicit differentiation) Consider the equation

$$
\begin{equation*}
f(x, y)=0 \tag{3.22}
\end{equation*}
$$

Suppose (3.22) holds on an open set in \mathbb{R}^{2} in the sense that there exists a function $g: \mathbb{R} \rightarrow \mathbb{R}$ implicitly defined by $f[x, g(x)]=0$. Define the function $h: \mathbb{R} \rightarrow \mathbb{R}$ by $x \mapsto f[x, g(x)]$ and the function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $x \mapsto[x, g(x)]$. Then h is the composite of f and ϕ, so that by the chain rule we have

$$
h^{\prime}(x)=\mathrm{D} g(x)=\mathrm{D} \phi \times \mathrm{D} f=\binom{1}{g^{\prime}(x)}\left(\begin{array}{ll}
\frac{\partial f}{\partial x} & \left.\frac{\partial f}{\partial y}\right)=\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y} g^{\prime}(x) .
\end{array}\right.
$$

On the other hand, from (3.22) we have $h^{\prime}(x)=0$, so that

$$
\begin{equation*}
\frac{\partial y}{\partial x}=g^{\prime}(x)=-\frac{\partial f / \partial x}{\partial f / \partial y} \tag{3.23}
\end{equation*}
$$

This result also follows by the chain rule for differentials, since it implies

$$
\frac{\partial f}{\partial x} \mathrm{~d} x+\frac{\partial f}{\partial y} \frac{\partial y}{\partial x} \mathrm{~d} x=0
$$

from which $\sqrt{3.23}$ follows after rearranging and dividing through by $\mathrm{d} x$.
Example 3.5. $\mathrm{d}(A x)=A(\mathrm{~d} x)$ and so

$$
\begin{equation*}
\mathrm{D}(A x)=\frac{\partial A x}{\partial x^{\prime}}=A . \tag{3.24}
\end{equation*}
$$

Example 3.6. $\mathrm{d}\left(x^{\prime} A x\right)=x^{\prime} A(\mathrm{~d} x)+(\mathrm{d} x)^{\prime} A x=x^{\prime}\left(A+A^{\prime}\right)(\mathrm{d} x)$ and so

$$
\begin{equation*}
\mathrm{D}\left(x^{\prime} A x\right)=\frac{\partial x^{\prime} A x}{\partial x^{\prime}}=x^{\prime}\left(A+A^{\prime}\right) \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial x^{\prime} A x}{\partial x}=\left(A+A^{\prime}\right) x . \tag{3.26}
\end{equation*}
$$

Example 3.7. $\mathrm{d}\left(y^{\prime} A z\right)=y^{\prime}(\mathrm{d} A) z=\left(z^{\prime} \otimes y^{\prime}\right)(\operatorname{vec} \mathrm{d} A)$, so that

$$
\begin{equation*}
\mathrm{D}\left(y^{\prime} A z\right)=\frac{\partial y^{\prime} A z}{\partial(\operatorname{vec} A)^{\prime}}=z^{\prime} \otimes y^{\prime} \tag{3.27}
\end{equation*}
$$

and, with (2.19),

$$
\begin{equation*}
\frac{\partial y^{\prime} A z}{\partial A}=y z^{\prime} \tag{3.28}
\end{equation*}
$$

Example 3.8. $\mathrm{d}(A X B)=A(\mathrm{~d} X) B$, so that $\mathrm{d}(\operatorname{vec} A X B)=\left(B^{\prime} \otimes A\right)(\operatorname{vec} \mathrm{d} X)$ and therefore

$$
\begin{equation*}
\mathrm{D}(A X B)=\frac{\partial \operatorname{vec} A X B}{\partial(\operatorname{vec} X)^{\prime}}=B^{\prime} \otimes A . \tag{3.29}
\end{equation*}
$$

Example 3.9. An application of (3.16) is

$$
\begin{equation*}
\mathrm{D} \operatorname{vec} X^{-1}=\frac{\partial \operatorname{vec} X^{-1}}{\partial(\operatorname{vec} X)^{\prime}}=-X^{\prime-1} \otimes X^{-1} \tag{3.30}
\end{equation*}
$$

and, using (2.29), we get

$$
\frac{\partial x^{i j}}{\partial x_{r s}}=-x^{i r} x^{s j}
$$

Example 3.10.

$$
\begin{equation*}
\mathrm{D} \operatorname{vec}(X \otimes Y)=\frac{\partial \operatorname{vec}(X \otimes Y)}{\partial(\operatorname{vec} Z)^{\prime}}=? ? ? ? ? ? \tag{3.31}
\end{equation*}
$$

Example 3.11. An application of (3.18) is: $\mathrm{d} \log |A|=|A|^{-1} \mathrm{~d}|A|=\operatorname{tr}\left(A^{-1} \mathrm{~d} A\right)=$ $\left(\operatorname{vec} A^{\prime-1}\right)^{\prime}(\mathrm{d} \operatorname{vec} A)$, and so if A is a function of a scalar α, there holds

$$
\begin{equation*}
\mathrm{d} \log |A|=\left(\operatorname{vec} A^{\prime-1}\right)^{\prime} \frac{\partial \operatorname{vec} A}{\partial \alpha} \mathrm{~d} \alpha=\operatorname{tr} A^{\prime-1} \frac{\partial A}{\partial \alpha} \mathrm{~d} \alpha \tag{3.32}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\frac{\partial \log |A|}{\partial \alpha}=\operatorname{tr} A^{\prime-1} \frac{\partial A}{\partial \alpha} \tag{3.33}
\end{equation*}
$$

Example 3.12. Let X be an $m \times n$-matrix; then $\mathrm{d}\left(X^{\prime} X\right)=\left(\mathrm{d} X^{\prime}\right) X+X^{\prime}(\mathrm{d} X)$, so that

$$
\begin{gathered}
\mathrm{d} \operatorname{vec}\left(X^{\prime} X\right)=\left(X^{\prime} \otimes I_{n}\right)\left(\operatorname{vec} \mathrm{d} X^{\prime}\right)+\left(I_{n} \otimes X^{\prime}\right)(\operatorname{vec} \mathrm{d} X) \\
=\left(X^{\prime} \otimes I_{n}\right) K_{m n}(\operatorname{vec} \mathrm{~d} X)+\left(I_{n} \otimes X^{\prime}\right)(\operatorname{vec} \mathrm{d} X) \\
=K_{n}\left(I_{n} \otimes X^{\prime}\right)(\operatorname{vec} \mathrm{d} X)+\left(I_{n} \otimes X^{\prime}\right)(\operatorname{vec} \mathrm{d} X) \\
=2 N_{n}\left(I_{n} \otimes X^{\prime}\right)(\operatorname{vec} \mathrm{d} X)
\end{gathered}
$$

therefore

$$
\mathrm{D} \operatorname{vec} X^{\prime} X=\frac{\partial \operatorname{vec} X^{\prime} X}{\partial(\operatorname{vec} X)^{\prime}}=2 N_{n}\left(I_{n} \otimes X^{\prime}\right)
$$

Similarly,

$$
\begin{equation*}
\mathrm{D} \operatorname{vec} X X^{\prime}=\frac{\partial \operatorname{vec} X X^{\prime}}{\partial(\operatorname{vec} X)^{\prime}}=2 N_{m}\left(X \otimes I_{m}\right) \tag{3.34}
\end{equation*}
$$

Example 3.13. Let X be an $m \times n$-matrix and A and $m \times m$-matrix. Then $\mathrm{d} \operatorname{tr} X^{\prime} A X=$ $\operatorname{tr}(\mathrm{d} X)^{\prime} A X+\operatorname{tr} X^{\prime} A(\mathrm{~d} X)=2 \operatorname{tr} X^{\prime} A(\mathrm{~d} X)=2\left(\operatorname{vec} A^{\prime} X\right)^{\prime}(\operatorname{vec} \mathrm{d} X)$, so that

$$
\mathrm{D} \operatorname{tr} X^{\prime} A X=\frac{\partial \operatorname{tr} X^{\prime} A X}{\partial(\operatorname{vec} X)^{\prime}}=2\left(\operatorname{vec} A^{\prime} X\right)^{\prime}
$$

and

$$
\frac{\partial \operatorname{tr} X^{\prime} A X}{\partial X}=2 A^{\prime} X
$$

Example 3.14. Let X be an $n \times n$-matrix. Then $\mathrm{d} \operatorname{tr} X^{2}=\operatorname{tr}[(\mathrm{d} X) X+X(\mathrm{~d} X)]=$ $2 \operatorname{tr} X(\mathrm{~d} X)=2\left(\operatorname{vec} X^{\prime}\right)^{\prime}(\operatorname{vec} \mathrm{d} X)$, so that

$$
\mathrm{D} \operatorname{tr} X^{2}=\frac{\partial \operatorname{tr} X^{2}}{\partial(\operatorname{vec} X)^{\prime}}=2(\operatorname{vec} X)^{\prime}
$$

and

$$
\frac{\partial \operatorname{tr} X^{2}}{\partial X}=2 X
$$

Example 3.15. Let X be an $n \times n$-matrix. Then $\mathrm{d} \log |X|=\operatorname{tr} X^{-1}(\mathrm{~d} X)=\left(\operatorname{vec} X^{\prime-1}\right)^{\prime}(\operatorname{vec} \mathrm{d} X)$, so that

$$
\mathrm{D} \log |X|=\frac{\partial \log |X|}{\partial(\operatorname{vec} X)^{\prime}}=\left(\operatorname{vec} X^{\prime-1}\right)^{\prime},
$$

and

$$
\frac{\partial \log |X|}{\partial X}=X^{\prime-1}
$$

4 Second-order differentiation

4.1 Twice-differentiability

Let f be a function from an open set $S \subset \mathbb{R}^{m}$ to \mathbb{R}^{n}; let $x \in S, u \in \mathbb{R}^{m}$, and let f be differentiable at x. The function f is twice differentiable at x if $\mathrm{D} f$ is differentiable at x, i.e. if there exists a real $m n \times m$-matrix B, depending on x but not on u, such that

$$
\begin{equation*}
\operatorname{vec} \mathrm{D} f(x+u)=\operatorname{vec} \mathrm{D} f(x)+B(x) u+o(u) \tag{4.1}
\end{equation*}
$$

where $o(u)$ is a function such that $\lim _{|u| \rightarrow 0}|o(u)| /|u|=0$. The matrix B is the derivative of vec $\mathrm{D} f$ at x, i.e. $B(x)=\mathrm{D}[\mathrm{D} f]=\partial[\operatorname{vec} \mathrm{D} f(x)] / \partial x^{\prime}$; note that for $\mathrm{D} f$ to be differentiable, it must exist in a neighborhood of x, i.e. f must be differentiable in a neighborhood of x.

It will be easier to work with the $m n \times m$-matrix $\mathrm{H} f(x)=\mathrm{D}[\mathrm{D} f]^{\prime}=K_{m n} B(x)=$ $\partial \operatorname{vec}[\mathrm{D} f(x)]^{\prime} / \partial x^{\prime}$; this matrix is called the Hessian matrix of f at x, and if $n=1$, its determinant is called the Hessian of f. The Hessian matrix is equal to the Hessian matrices of the component functions of f stacked below each other:

$$
\mathrm{H} f(x)=\left(\begin{array}{c}
\mathrm{H} f_{1}(x) \tag{4.2}\\
\mathrm{H} f_{2}(x) \\
\vdots \\
\mathrm{H} f_{n}(x)
\end{array}\right) .
$$

It can be shown that the component Hessian matrices of f at x are symmetric, i.e. $\mathrm{H} f_{i}(x)=\left(\mathrm{H} f_{i}(x)\right)^{\prime}$ if f is twice differentiable at x (Dieudonné, 1960, section 8.12). Note that $\mathrm{H} f$ also exists if the partial derivatives $\partial f / \partial x_{i}$ are differentiable and $\mathrm{D} f$ is not differentiable; then the $\mathrm{H} f_{i}$ are not necessarily symmetric (in this case a sufficient condition for $\mathrm{H} f_{i}$ to be symmetric is that each partial derivative is continuous).

4.2 The second differential

The second differential is the differential of the first differential:

$$
\begin{equation*}
\mathrm{d}^{2} f=\mathrm{d}(\mathrm{~d} f) \tag{4.3}
\end{equation*}
$$

where we consider $\mathrm{d} f$ as a function of x only, holding $\mathrm{d} x$ constant. The second differential exists if and only if f is twice differentiable, since

$$
\begin{array}{r}
\mathrm{d}^{2} f=\mathrm{d}(\mathrm{~d} f)=\mathrm{d}[\mathrm{D} f(x) \mathrm{d} x]=\left[(\mathrm{d} x)^{\prime} \otimes I_{n}\right] \operatorname{vec}[\mathrm{d} \mathrm{D} f(x)] \\
=\left[(\mathrm{d} x)^{\prime} \otimes I_{n}\right] \frac{\partial \operatorname{vec} \mathrm{D} f(x)}{\partial x^{\prime}}(\mathrm{d} x)=\left[(\mathrm{d} x)^{\prime} \otimes I_{n}\right] B(x)(\mathrm{d} x) \\
=\left[(\mathrm{d} x)^{\prime} \otimes I_{n}\right] K_{m n} \mathrm{H} f(x)(\mathrm{d} x)=\left[I_{n} \otimes(d x)^{\prime}\right] \mathrm{H} f(x)(\mathrm{d} x) \\
=\left(\begin{array}{c}
(\mathrm{d} x)^{\prime} \mathrm{H} f_{1}(x)(\mathrm{d} x) \\
(\mathrm{d} x)^{\prime} \mathrm{H} f_{2}(x)(\mathrm{d} x) \\
\vdots \\
(\mathrm{d} x)^{\prime} \mathrm{H} f_{n}(x)(\mathrm{d} x)
\end{array}\right)
\end{array}
$$

Thus $\mathrm{d}^{2} f$ is a n-vector of quadratic forms in $\mathrm{H} f_{i}(x)$.
Alternatively, if f is twice differentiable and $B(x)$ is an $m n \times m$-matrix such that for all $\mathrm{d} x$

$$
\begin{equation*}
d^{2} f=\left[I_{n} \otimes(d x)^{\prime}\right] B(x)(d x) \tag{4.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathrm{H} f(x)=\frac{1}{2}\left\{B(x)+\left[B^{\prime}(x)\right]_{v}\right\} \tag{4.5}
\end{equation*}
$$

where

$$
B(x)=\left(\begin{array}{c}
B_{1}(x) \tag{4.6}\\
B_{2}(x) \\
\vdots \\
B_{n}(x)
\end{array}\right), \quad\left[B^{\prime}(x)\right]_{v}=\left(\begin{array}{c}
B_{1}^{\prime}(x) \\
B_{2}^{\prime}(x) \\
\vdots \\
B_{n}^{\prime}(x)
\end{array}\right),
$$

and each B_{i} is a $m \times m$-matrix. For example, if $n=1$ then

$$
\begin{equation*}
d^{2} f=(d x)^{\prime} B(x)(d x) \tag{4.7}
\end{equation*}
$$

for all $\mathrm{d} x$, if and only if

$$
\begin{equation*}
\mathrm{H} f(x)=\frac{1}{2}\left[B(x)+\left[B^{\prime}(x)\right],\right. \tag{4.8}
\end{equation*}
$$

4.3 Matrix functions

A matrix function F from an open set $S \subset \mathbb{R}^{m \times n}$ to $\mathbb{R}^{p \times q}$ is twice differentiable if vec F is twice differentiable. The Hessian matrix $\mathrm{H} F$ of F is the mnpq $\times m n$-matrix

$$
\mathrm{H} F(X)=\left(\begin{array}{c}
\mathrm{H} F_{11}(\operatorname{vec} X) \\
\vdots \\
\mathrm{H} F_{p 1}(\operatorname{vec} X) \\
\vdots \\
\vdots \\
\mathrm{H} F_{1 q}(\operatorname{vec} X) \\
\vdots \\
\mathrm{H} F_{p q}(\operatorname{vec} X)
\end{array}\right),
$$

where each $\mathrm{H}_{k t}$ is a $m n \times m n$-matrix. The second differential of F is defined as $\mathrm{d}^{2} F(X ; \mathrm{d} X)=\mathrm{d}[\mathrm{d} F(X ; \mathrm{d} X)]$, i.e. $\quad \operatorname{vec} \mathrm{d}^{2} F(X ; \mathrm{d} X)=\mathrm{d}^{2}[\operatorname{vec} F(\operatorname{vec} X ; \operatorname{vec} \mathrm{d} X)]$. If F is twice differentiable then

$$
\begin{equation*}
\text { vec } \left.\mathrm{d}^{2} F=\left[I_{p q} \otimes(\operatorname{vec} \mathrm{~d} X)^{\prime}\right] B(X)(\operatorname{vec} \mathrm{d} X)\right] \tag{4.9}
\end{equation*}
$$

for every $\mathrm{d} X \in \mathbb{R}^{p \times q}$, if and only if

$$
\begin{equation*}
\mathrm{H} F(X)=\frac{1}{2}\left\{B(X)+\left[B^{\prime}(X)\right]_{v}\right\} . \tag{4.10}
\end{equation*}
$$

An explicit expression for the Hessian matrix is

$$
\begin{equation*}
\mathrm{H} F=\sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{m} \sum_{\ell=1}^{n}\left(\operatorname{vec} \frac{\partial^{2} F}{\partial x_{k \ell} \partial x_{i j}}\right) \otimes\left(\operatorname{vec} H_{i j}\right) \otimes\left(\operatorname{vec} H_{k \ell}\right)^{\prime} \tag{4.11}
\end{equation*}
$$

where $H_{i j}$ is the $m \times n$-matrix with 1 as element (i, j) and 0 elsewhere. If $n=1$, then (4.11) simplifies to

$$
\begin{equation*}
\mathrm{H} F=\sum_{i=1}^{m} \sum_{j=1}^{n}\left(\operatorname{vec} \frac{\partial^{2} F}{\partial x_{j} \partial x_{i}}\right) \otimes e_{i} e_{j}^{\prime}, \tag{4.12}
\end{equation*}
$$

where e_{i} is the m-vector with 1 as element i and 0 elsewhere.

4.4 Examples

Example 4.1. (Example 3.2 continued). The second differential of $f(x, y)=x^{2}+2 x y-$ $2 y^{2}$ is

$$
\mathrm{d}(\mathrm{~d} f)=\mathrm{d}[2(x+y) \mathrm{d} x+2(x-y) \mathrm{d} y]=2(\mathrm{~d} x)^{2}+4(\mathrm{~d} x)(\mathrm{d} y)-2(\mathrm{~d} y)^{2}
$$

so that

$$
B(x)=\left(\begin{array}{cc}
2 & 4 \\
0 & -2
\end{array}\right)
$$

Thus the Hessian matrix is

$$
\mathrm{H} f=\frac{1}{2}\left[B(x)+B^{\prime}(x)\right]=\left(\begin{array}{cc}
2 & 2 \\
2 & -2
\end{array}\right)
$$

Example 4.2. Often the second differential of a real-valued matrix function has the form $\operatorname{tr} B(\mathrm{~d} X)^{\prime} C(\mathrm{~d} X)$ or $\operatorname{tr} B(\mathrm{~d} X) C(\mathrm{~d} X)$. Then the following result is useful.

Let $\phi: S \subset \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a real-valued matrix function.
a. Suppose $d^{2} \phi=\operatorname{tr} B(d X)^{\prime} C(d X)$ with B an $n \times n$-matrix and C an $m \times m$ matrix. Then $d^{2} \phi=(\mathrm{d} \operatorname{vec} X)^{\prime}\left(B^{\prime} \otimes C\right)(\mathrm{d} \operatorname{vec} X)$, so that

$$
\begin{equation*}
\mathrm{H} \phi(X)=\frac{1}{2}\left(B^{\prime} \otimes C+B \otimes C^{\prime}\right) \tag{4.13}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} \phi(x)}{\partial x_{i j} \partial x_{r s}}= & \frac{1}{2}\left(b_{s j} c_{i r}+b_{j s} c_{r i}\right) \\
& i, r=1,2, \ldots, m ; j, s=1,2, \ldots, n \tag{4.14}
\end{align*}
$$

b. Suppose $\mathrm{d}^{2} \phi=\operatorname{tr} B(\mathrm{~d} X) C(\mathrm{~d} X)$ with B and $C n \times m$-matrices. Then $d^{2} \phi=\left(\mathrm{d} \operatorname{vec} X^{\prime}\right)^{\prime}\left(B^{\prime} \otimes C\right)(\mathrm{d} \operatorname{vec} X)=(\mathrm{d} \operatorname{vec} X)^{\prime} K_{n m}\left(B^{\prime} \otimes C\right)(\mathrm{d} \operatorname{vec} X)$, so that

$$
\begin{equation*}
\mathrm{H} \phi(X)=\frac{1}{2} K_{n m}\left(B^{\prime} \otimes C+C^{\prime} \otimes B\right), \tag{4.15}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} \phi(x)}{\partial x_{i j} \partial x_{r s}}= & \frac{1}{2}\left(b_{s i} c_{j r}+b_{j r} c_{s i}\right) \\
& i, r=1,2, \ldots, m ; j, s=1,2, \ldots, n \tag{4.16}
\end{align*}
$$

Equations (4.14) and (4.16) can be derived from respectively (4.13) and (4.15) using (2.29) and 2.38).

Some special cases are:
a. (Example 3.13 continued) For $\phi(X)=\operatorname{tr} X^{\prime} A X$ with A an $m \times m$-matrix, we get $\mathrm{d}^{2} \phi(X)=2 \operatorname{tr}(\mathrm{~d} X)^{\prime} A(\mathrm{~d} X)$, so that

$$
\begin{equation*}
\mathrm{H}\left(\operatorname{tr} X^{\prime} A X\right)=I_{n} \otimes\left(A+A^{\prime}\right), \tag{4.17}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} \operatorname{tr} X^{\prime} A X}{\partial x_{i j} \partial x_{r s}}= & \delta_{j s}\left(a_{i r}+a_{r i}\right) \\
& i, r=1,2, \ldots, m ; j, s=1,2, \ldots, n \tag{4.18}
\end{align*}
$$

where $\delta_{j s}$ is the Kronecker delta ($\delta_{j j}=1$, and $\delta_{j s}=0$ for $j \neq s$).
b. (Example 3.14 continued) For $\phi(X)=\operatorname{tr} X^{2}$ we get $\mathrm{d} \phi(X)=\operatorname{tr}[(\mathrm{d} X) X+X(\mathrm{~d} X)]$ and $\mathrm{d}^{2} \phi(X)=2 \operatorname{tr}(\mathrm{~d} X)^{2}$, so that

$$
\begin{equation*}
\mathrm{H}\left(\operatorname{tr} X^{2}\right)=K_{n}\left(I_{n} \otimes I_{n}+I_{n} \otimes I_{n}\right)=2 K_{n}, \tag{4.19}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} \operatorname{tr} X^{2}}{\partial x_{i j} \partial x_{r s}} & =2 \delta_{i s} \delta_{j r}, \\
& i, r=1,2, \ldots, m ; j, s=1,2, \ldots, n . \tag{4.20}
\end{align*}
$$

c. (Example 3.15 continued) For $\phi(X)=\log |X|$, we get $\mathrm{d} \phi(X)=\operatorname{tr} X^{-1}(\mathrm{~d} X)$ and $\mathrm{d}^{2} \phi(X)=-\operatorname{tr} X^{-1}(\mathrm{~d} X) X^{-1}(\mathrm{~d} X)$ and therefore

$$
\begin{equation*}
\mathrm{H} \log |X|=-K_{n}\left(X^{\prime-1} \otimes X^{-1}\right), \tag{4.21}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\partial^{2} \log |X|}{\partial x_{i j} \partial x_{r s}}= & -x^{s i} x^{i r}, \\
& \quad i, r=1,2, \ldots, m ; j, s=1,2, \ldots, n . \tag{4.22}
\end{align*}
$$

Note that if X is a symmetric positive definite matrix, then $\mathrm{d}^{2} \log |X|=-(\operatorname{vec} \mathrm{d} X)^{\prime}\left(X^{-1} \otimes\right.$ $\left.X^{-1}\right)(\operatorname{vec} \mathrm{d} X)<0$, so that $\log |X|$ is a strictly concave function on the space of positive definite matrices.

Example 4.3. (Example 3.12 continued) Consider the matrix function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$, defined by $F(x)=\frac{1}{2} x x^{\prime}$, where x is a n-vector. There holds $\mathrm{d} F(x)=\frac{1}{2}\left[x(\mathrm{~d} x)^{\prime}+(\mathrm{d} x) x^{\prime}\right]$ so that, cf. (3.34),

$$
\mathrm{D} F(x)=2 N_{n}\left(x \otimes I_{n}\right)
$$

and $\mathrm{d}^{2} F(x)=(\mathrm{d} x)(\mathrm{d} x)^{\prime}$, so that $\mathrm{d}^{2} \operatorname{vec} F(x)=\operatorname{vec}(\mathrm{d} x)(\mathrm{d} x)^{\prime}=\left(I_{n} \otimes \mathrm{~d} x\right) \mathrm{d} x$. Now, $\mathrm{d} x=\left[I_{n} \otimes(\mathrm{~d} x)^{\prime}\right]\left(\operatorname{vec} I_{n}\right)$, so that

$$
I_{n} \otimes \mathrm{~d} x=I_{n} \otimes\left[I_{n} \otimes(\mathrm{~d} x)^{\prime}\right]\left(\operatorname{vec} I_{n}\right)
$$

$$
\begin{equation*}
=\left[I_{n} \otimes I_{n} \otimes(\mathrm{~d} x)^{\prime}\right]\left[I_{n} \otimes\left(\operatorname{vec} I_{n}\right)\right] . \tag{4.23}
\end{equation*}
$$

Therefore

$$
\mathrm{d}^{2} \operatorname{vec} F(x)=\left[I_{n^{2}} \otimes(\mathrm{~d} x)^{\prime}\right]\left(I_{n} \otimes \operatorname{vec} I_{n}\right) \mathrm{d} x,
$$

and

$$
\begin{equation*}
\mathrm{H} F(x)=\frac{1}{2}\left\{I_{n} \otimes \operatorname{vec} I_{n}+\left[\left(I_{n} \otimes \operatorname{vec} I_{n}\right)^{\prime}\right]_{v}\right\} . \tag{4.24}
\end{equation*}
$$

There holds

$$
I_{n} \otimes \operatorname{vec} I_{n}=\left(\begin{array}{cccc}
\operatorname{vec} I_{n} & 0 & \ldots & 0 \tag{4.25}\\
0 & \operatorname{vec} I_{n} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \operatorname{vec} I_{n}
\end{array}\right)=\left(\begin{array}{c}
E_{11} \\
E_{12} \\
\vdots \\
E_{1 n} \\
E_{21} \\
\vdots \\
\vdots \\
E_{n n}
\end{array}\right),
$$

so that

$$
\left[\left(I_{n} \otimes \operatorname{vec} I_{n}\right)^{\prime}\right]_{v}=\left(\begin{array}{c}
E_{11}^{\prime} \tag{4.26}\\
E_{12}^{\prime} \\
\vdots \\
E_{1 n}^{\prime} \\
E_{21}^{\prime} \\
\vdots \\
\vdots \\
E_{n n}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
E_{11} \\
E_{21} \\
\vdots \\
E_{n 1} \\
E_{12} \\
\vdots \\
\vdots \\
E_{n n}
\end{array}\right)=\left(K_{n} \otimes I_{n}\right)\left(I_{n} \otimes \operatorname{vec} I_{n}\right)
$$

Therefore

$$
\begin{align*}
\mathrm{H} F(x) & =\left[\frac{1}{2}\left(I_{n^{2}}+K_{n}\right) \otimes I_{n}\right]\left(I_{n} \otimes \operatorname{vec} I_{n}\right) \\
& =\left(N_{n} \otimes I_{n}\right)\left(I_{n} \otimes \operatorname{vec} I_{n}\right) \tag{4.27}
\end{align*}
$$

We can also use the explicit expression (4.12), which in this case is more straightforward. There holds

$$
\begin{equation*}
\frac{\partial^{2} F(x)}{\partial x_{j} \partial x_{i}}=\frac{1}{2}\left(e_{i} e_{j}^{\prime}+e_{j} e_{i}^{\prime}\right) \tag{4.28}
\end{equation*}
$$

and thus

$$
\begin{align*}
\mathrm{H} F(x) & =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\operatorname{vec}\left(e_{i} e_{j}^{\prime}+e_{j} e_{i}^{\prime}\right)\right] \otimes e_{i} e_{j}^{\prime} \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(e_{j} \otimes e_{i} \otimes e_{j}^{\prime} \otimes e_{i}+e_{i} \otimes e_{j} \otimes e_{j}^{\prime} \otimes e_{i}\right) \\
& =\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left[\left(e_{j} \otimes e_{j}^{\prime} \otimes e_{i} \otimes e_{i}+\left(K_{n} \otimes I_{n}\right)\left(e_{j} \otimes e_{j}^{\prime} \otimes e_{i} \otimes e_{i}\right)\right]\right. \\
& =\left[\frac{1}{2}\left(I_{n^{2}}+K_{n}\right) \otimes I_{n}\right]\left(I_{n} \otimes \operatorname{vec} I_{n}\right) \\
& =\left(N_{n} \otimes I_{n}\right)\left(I_{n} \otimes \operatorname{vec} I_{n}\right) . \tag{4.29}
\end{align*}
$$

5 Linearization of the regression estimator

Design-based sampling variances of non-linear statistics are often calculated by means of a linear approximation obtained by a Taylor expansion; examples are the variances of the general regression coefficient estimator and the regression estimator. The linearizations usually need some complicated differentiations. In this section, taken from Zeelenberg (1997), it is shown how matrix calculus can simplify these derivations, to the extent that even the Taylor expansion of the regression coefficient estimator can be derived in one line, which should be compared with the nearly one page that Särndal et al (1992, pp. 205-6) need. To be honest, the use of matrix calculus requires some more machinery to be set up, which is not needed for traditional methods. However this set-up can be regarded as an investment: once it has been learned, it can be used fruitfully in many other applications. See also Binder (1996) for applications similar to those of this section.

The π-estimator (Horvitz-Thompson estimator) of the finite population regression coefficient (cf. Särndal et al, 1992, section 5.10) is

$$
\begin{equation*}
\hat{B}=\hat{T}^{-1} \hat{t}, \tag{5.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \hat{T}=\sum_{k \in s} \frac{x_{k} x_{k}^{\prime}}{\pi_{k}}, \\
& \hat{t}=\sum_{k \in s} \frac{x_{k} y_{k}}{\pi_{k}},
\end{aligned}
$$

y_{k} is the variable of interest for individual k, x_{k} is the vector with the auxiliary variables for individual k, π_{k} is the inclusion probability for individual k, and s denotes the sample. Taking the total differential of (5.1), and evaluating at the point where $\hat{T}=T$, $\hat{t}=t$, we get

$$
\begin{equation*}
\mathrm{d} \hat{B}=-T^{-1}(\mathrm{~d} \hat{T}) T^{-1} t+T^{-1}(\mathrm{~d} \hat{t}) . \tag{5.2}
\end{equation*}
$$

Because of the connection between differentials and linear approximation, as given in equation (3.2), it immediately follows that (5.2) corresponds to the linearization of the regression coefficient estimator:

$$
\hat{B} \doteq B-T^{-1}(\hat{T}-T) T^{-1} t+T^{-1}(\hat{t}-t)=B+T^{-1}(\hat{t}-\hat{T} B),
$$

where $B=T^{-1} t$.
The regression estimator of a population total is (cf. Särndal et al, 1992, section 6.6)

$$
\begin{equation*}
\hat{t}_{y r}=\hat{y}_{y \pi}+\left(t_{x}-\hat{x}_{x \pi}\right)^{\prime} \hat{B}, \tag{5.3}
\end{equation*}
$$

where $\hat{y}_{y \pi}$ is the π-estimator of the variable of interest, t_{x} is the vector with the population totals of the auxiliary variables, $\hat{t}_{x \pi}$ is the vector with the π-estimators of the auxiliary variables, and \hat{B} is the estimator of the regression coefficient of the auxiliary
variables on the variable of interest. Taking the total differential of (5.3), and evaluating at the point where $\hat{t}_{y \pi}=t_{y}, \hat{t}_{x \pi}=t_{x}$, and $\hat{B}=B$, we get the linear approximation of the regression estimator

$$
\mathrm{d} \hat{t}_{y r}=\mathrm{d} \hat{t}_{y \pi}-\left(\mathrm{d} \hat{t}_{x \pi}\right)^{\prime} B,
$$

so that

$$
\hat{t}_{y r} \doteq t_{y}+\hat{t}_{y \pi}-t_{y}+\left(t_{x}-\hat{t}_{x \pi}\right)^{\prime} B=\hat{t}_{y \pi}+\left(t_{x}-\hat{t}_{x \pi}\right)^{\prime} B
$$

Note that for the linearization of the regression estimator we do not need that of the regression coefficient estimator B.

6 Maximum-likelihood estimation of the multivariate linear model

6.1 Introduction

This section is a generalization of section 15.8 of Magnus and Neudecker (1988) to the case where each equation may have different explanatory variables.

6.2 The model

Consider the model

$$
\begin{equation*}
y_{i j}=x_{i j}^{\prime} \beta_{i}+\epsilon_{i j}, i=1,2, \ldots, m, j=1,2, \ldots, n, \tag{6.1}
\end{equation*}
$$

where $x_{i j}$ is a k_{i}-vector and $\epsilon_{i j}$ is a random variable. For a given j we can stack the equations (6.1) as

$$
\begin{equation*}
y_{j}=X_{j} \beta+\epsilon_{j}, j=1,2, \ldots, n, \tag{6.2}
\end{equation*}
$$

where $y_{j}=\left(y_{1 j}, y_{2 j}, \ldots, y_{m j}\right)^{\prime}, \beta=\left(\beta_{1}^{\prime}, \beta_{2}^{\prime}, \ldots, \beta_{m}^{\prime}\right)^{\prime}, \epsilon_{j}=\left(\epsilon_{1 j}, \epsilon_{2 j}, \ldots, \epsilon_{m j}\right)^{\prime}$, and

$$
X_{j}=\left(\begin{array}{cccc}
x_{1}^{\prime} & 0 & \ldots & 0 \tag{6.3}\\
0 & x_{2}^{\prime} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & x_{m}^{\prime}
\end{array}\right)
$$

It is assumed that

$$
\begin{equation*}
\epsilon_{j} \sim \mathcal{N}_{m}(0, \Omega), \tag{6.4}
\end{equation*}
$$

where Ω is a positive definite $m \times m$-matrix, and that ϵ_{j} and $\epsilon_{s}(s \neq t)$ are independent. Thus

$$
\begin{equation*}
y_{j} \sim \mathcal{N}_{m}(X \beta, \Omega), \tag{6.5}
\end{equation*}
$$

and y_{j} and $y_{s}(s \neq j)$ are independent. The log-likelihood of the model 6.2) is therefore

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} \log 2 \pi-\frac{1}{2} n \log |\Omega|-\frac{1}{2} \sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1} \epsilon_{j} . \tag{6.6}
\end{equation*}
$$

6.3 First-order conditions

Thus

$$
\begin{align*}
\mathrm{d} \mathcal{L} & =\frac{1}{2} n \operatorname{tr} \Omega^{-1}(S-\Omega) \Omega^{-1}(\mathrm{~d} \Omega)-\sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1}\left(\mathrm{~d} \epsilon_{j}\right)= \\
& =\frac{1}{2} n \operatorname{tr} \Omega^{-1}(S-\Omega) \Omega^{-1}(\mathrm{~d} \Omega)+\sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1} X_{j}(\mathrm{~d} \beta) \tag{6.7}
\end{align*}
$$

where $S=\left(n^{-1}\right) \sum_{j=1}^{n} \epsilon_{j} \epsilon_{j}^{\prime}$ is the covariance matrix of the sample; note that $\mathrm{E}(S)=\Omega$. Vectorizing we get

$$
\begin{align*}
\mathrm{d} \mathcal{L} & =\frac{1}{2} n\left[\operatorname{vec} \Omega^{-1}(S-\Omega) \Omega^{-1}\right]^{\prime}(\operatorname{vec} \mathrm{d} \Omega)+\sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1} X_{j}(\mathrm{~d} \beta) \tag{6.8}\\
& =\frac{1}{2}\left[\operatorname{vec} \Omega^{-1}(S-\Omega) \Omega^{-1}\right]^{\prime} D_{m}(\mathrm{~d} \omega)+\sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1} X_{j}(\mathrm{~d} \beta), \tag{6.9}
\end{align*}
$$

where $\omega=\mathrm{v}(\Omega)$ contains only the distinct elements of Ω. Thus

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \beta^{\prime}}=\sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1} X_{j}=\sum_{j=1}^{n}\left(y_{j}-X_{j} \beta\right)^{\prime} \Omega^{-1} X_{j}, \tag{6.10a}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \mathcal{L}}{\partial \omega^{\prime}}=\frac{1}{2} n\left[\operatorname{vec} \Omega^{-1}(S-\Omega) \Omega^{-1}\right]^{\prime} D_{m} \tag{6.10b}
\end{equation*}
$$

Setting the derivatives equal to zero and rearranging, we obtain as estimator of β :

$$
\begin{equation*}
\hat{\beta}=\left(\sum_{j=1}^{n} X_{j}^{\prime} \hat{\Omega}^{-1} X_{j}\right)^{-1}\left(\sum_{j=1}^{n} X_{j}^{\prime} \hat{\Omega}^{-1} y_{j}\right) . \tag{6.11}
\end{equation*}
$$

For Ω we get

$$
\frac{1}{2} n D_{m}^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1}\right) \operatorname{vec}(S-\Omega)=0 ;
$$

thus

$$
\frac{1}{2} n D_{m}^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1}\right) D_{m} v(S-\Omega)=0
$$

and, since $D_{m}^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1}\right) D_{m}$ is non-singular (see 2.41), we get $\mathrm{v}(S-\Omega)=0$, and so $\operatorname{vec}(S-\Omega)=0$, which implies

$$
\begin{equation*}
\hat{\Omega}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{j}-X_{j} \hat{\beta}\right)\left(y_{j}-X_{j} \hat{\beta}\right)^{\prime} . \tag{6.12}
\end{equation*}
$$

6.4 The Hessian matrix

Taking the differential of (6.7) we get the second differential of the log-likelihood:

$$
\begin{aligned}
\mathrm{d}^{2} \mathcal{L}= & -\frac{1}{2} n \operatorname{tr} \Omega^{-1}(S-\Omega) \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\mathrm{~d} \Omega) \\
& -\frac{1}{2} n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(S-\Omega) \Omega^{-1}(\mathrm{~d} \Omega)
\end{aligned}
$$

$$
\begin{align*}
& -\frac{1}{2} n \sum_{j=1}^{n} \operatorname{tr} \Omega^{-1} \epsilon_{j}(\mathrm{~d} \beta)^{\prime} X_{j}^{\prime} \Omega^{-1}(\mathrm{~d} \Omega) \\
& -\frac{1}{2} n \sum_{j=1}^{n} \operatorname{tr} \Omega^{-1} X_{j}(\mathrm{~d} \beta) \epsilon_{j}^{\prime} \Omega^{-1}(\mathrm{~d} \Omega)-\frac{1}{2} n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\mathrm{~d} \Omega) \\
& -(\mathrm{d} \beta)^{\prime}\left(\sum_{j=1}^{n} X_{j}^{\prime} \Omega^{-1} X_{j}\right)(\mathrm{d} \beta)-\sum_{j=1}^{n} \epsilon_{j}^{\prime} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1} X_{j}(\mathrm{~d} \beta) \\
= & -\frac{1}{2} n(\operatorname{vec} \mathrm{~d} \Omega)^{\prime}\left[\Omega^{-1} \otimes \Omega^{-1}(2 \Omega-S) \Omega^{-1}\right](\operatorname{vec} \mathrm{d} \Omega) \\
& -(\mathrm{d} \beta)^{\prime}\left(\sum_{j=1}^{n} X_{j}^{\prime} \Omega^{-1} X_{j}\right)(\mathrm{d} \beta) \\
& -2 n(\operatorname{vec} \mathrm{~d} \Omega)^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1}\right)\left(\sum_{j=1}^{n} \epsilon_{j} \otimes X_{j}\right)(\mathrm{d} \beta), \tag{6.13}
\end{align*}
$$

where the last equality sign rests among others on (2.4). Thus the Hessian matrix of the log-likelihood is

$$
\begin{align*}
& \mathrm{H} \mathcal{L}(\beta, \omega)= \\
& -\left(\begin{array}{cc}
\sum_{j=1}^{n} X_{j}^{\prime} \Omega^{-1} X_{j} & n\left(\sum_{j=1}^{n} \epsilon_{j}^{\prime} \otimes X_{j}^{\prime}\right)\left(\Omega^{-1} \otimes \Omega^{-1}\right) D_{m} \\
n D_{m}^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1}\right)\left(\sum_{j=1}^{n} \epsilon_{j} \otimes X_{j}\right) & \frac{1}{2} n D_{m}^{\prime}\left[\Omega^{-1} \otimes \Omega^{-1}(2 \Omega-S) \Omega^{-1}\right] D_{m}
\end{array}\right) . \tag{6.14}
\end{align*}
$$

6.5 The information matrix

Taking expectations and multiplying by -1 we get the information matrix

$$
\mathcal{I}(\beta, \omega)=\left(\begin{array}{cc}
\sum_{j=1}^{n} X_{j}^{\prime} \Omega^{-1} X_{j} & 0 \tag{6.15}\\
0 & \frac{1}{2} n D_{m}^{\prime}\left[\Omega^{-1} \otimes \Omega^{-1}\right] D_{m}
\end{array}\right)
$$

which can also be obtained by taking the expectation of the outer product of the first derivatives. It follows that the asymptotic covariance matrix of $\hat{\Omega}$ is given by

$$
\begin{align*}
\mathrm{V}_{\mathrm{as}}[\sqrt{n} \operatorname{vec}(\hat{\Omega}-\Omega)] & =D_{m}\left\{\mathrm{~V}_{\mathrm{as}}[\sqrt{n}(\hat{\omega}-\omega)]\right\} D_{m}^{\prime} \\
& =2 D_{m}\left[D_{m}^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1}\right) D_{m}^{\prime}\right]^{-1} D_{m}^{\prime} \\
& =2 D_{m} D_{m}^{+}(\Omega \otimes \Omega) D_{m}^{+\prime} D_{m}^{\prime}=2 N_{m}(\Omega \otimes \Omega) N_{m} \\
& =2 N_{m}(\Omega \otimes \Omega) \tag{6.16}
\end{align*}
$$

Using (2.28) and (2.37) we get from (6.16)

$$
\operatorname{cov}_{\mathrm{as}}\left[\sqrt{n}\left(\hat{\omega}_{i j}-\omega_{i j}\right), \sqrt{n}\left(\hat{\omega}_{r s}-\omega_{r s}\right)\right]=\omega_{i r} \omega_{j s}+\omega_{i s} \omega_{j r}
$$

In particular

$$
\operatorname{var}_{\mathrm{as}}\left[\sqrt{n}\left(\hat{\omega}_{i j}-\omega_{i j}\right)\right]=\omega_{i i} \omega_{j j}+\omega_{i j}^{2}
$$

and

$$
\operatorname{var}_{\mathrm{as}}\left[\sqrt{n}\left(\hat{\omega}_{i i}-\omega_{i i}\right)\right]=2 \omega_{i i}^{2}
$$

Using the information matrix one easily shows that the method of scoring amounts to iterated generalized least squares according to 6.12 and 6.13. Since any information matrix is positive definite, this algorithm always leads to a maximum.

7 Maximum-likelihood estimation of the factor-analysis model

7.1 Introduction

In this section we give an application to the factor-analysis model and derive the Hessian matrix and the information matrix. Many books on multivariate analysis derive the first-order conditions, see e.g. Anderson (1958, chapter 14), Bartholomew (1987, chapter 3), Lawley and Maxwell (1963, chapter 4), and Morrison (1967, chapter 9). Lawley and Maxwell (1963, chapter 5) and Jöreskog (1972) also derive the information matrix, but they do not use only matrix methods.

Neudecker and Satorra (1991) \qquad
Subsection 2 gives the model, subsection 3 derives the first-order conditions for maximumlikelihood estimation, subsection 4 the Hessian matrix, and subsection 5 the information matrix.

7.2 The model

Consider the model

$$
\begin{equation*}
x_{j i}=\mu_{i}+\sum_{k=1}^{q} \lambda_{i k} y_{k}+\epsilon_{j i}, i=1,2, \ldots, p, j=1,2, \ldots, n, \tag{7.1}
\end{equation*}
$$

where μ_{i} and $\lambda_{i k}$ are coefficients and y_{k} and $\epsilon_{j i}$ are random variables. In matrix notation we can write (7.1) as

$$
\begin{equation*}
x_{j}=\mu+\Lambda y+\epsilon_{j}, \quad j=1,2, \ldots, n \tag{7.2}
\end{equation*}
$$

where $x_{j}=\left(x_{j 1}, x_{j 2}, \ldots, x_{j p}\right)^{\prime}, \mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{p}\right)^{\prime}, y=\left(y_{1}, y_{2}, \ldots, y_{q}\right)^{\prime}, \epsilon_{j}=\left(\epsilon_{j 1}, \epsilon_{j 2}, \ldots, \epsilon_{j p}\right)^{\prime}$, and $\Lambda=\left(\lambda_{i k}\right)$. It is assumed that

$$
\begin{equation*}
y \sim \mathcal{N}_{q}\left(0, I_{q}\right) \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon_{j} \sim \mathcal{N}_{p}(0, \Psi) \tag{7.4}
\end{equation*}
$$

The conditional distribution of x_{j} given y is therefore

$$
\begin{equation*}
x_{j} \mid y \sim N_{p}(\mu+\Lambda y, \Psi) \tag{7.5}
\end{equation*}
$$

and the unconditional distribution of x_{j} is

$$
\begin{equation*}
x_{j} \sim N_{p}\left(\mu, \Lambda \Lambda^{\prime}+\Psi\right) \tag{7.6}
\end{equation*}
$$

For Λ and Ψ to be identifiable from a sample, we must impose restrictions on Λ and Ψ. Usually one assumes that Ψ is diagonal and imposes in addition some other restrictions on Λ and Ψ. For example, in confirmatory factor analysis one has information on Λ, such as that some $\lambda_{i k}$ are zero; in exploratory factor analysis one usually assumes that
$\Lambda^{\prime} \Psi^{-1} \Lambda$ is diagonal. We proceed to derive the maximum-likelihood estimates of μ, Λ, and Ψ under the assumption that Ψ is diagonal.

Suppose we have n observations on the vector x. The log-likelihood of the sample is then

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{2} n p \log 2 \pi-\frac{1}{2} n \log |\Omega|-\frac{1}{2} n \operatorname{tr} \Omega^{-1} S, \tag{7.7}
\end{equation*}
$$

where $\Omega=\Lambda \Lambda^{\prime}+\Psi$, and $S=n^{-1} \sum_{j=1}^{n}\left(x_{j}-\mu\right)\left(x_{j}-\mu\right)^{\prime}$ is the covariance matrix of the sample.

7.3 First-order conditions

The differential of the log-likelihood is

$$
\begin{align*}
\mathrm{d} \mathcal{L} & =-\frac{1}{2} n \mathrm{~d}(\log |\Omega|)-\frac{1}{2} n \operatorname{tr} \Omega^{-1} \mathrm{~d} S-\frac{1}{2} n \operatorname{tr}\left(\mathrm{~d} \Omega^{-1}\right) S \\
& =-\frac{1}{2} n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\Omega-S)+n \operatorname{tr} \Omega^{-1} u(\mathrm{~d} \mu)^{\prime}, \tag{7.8}
\end{align*}
$$

where $u=n^{-1} \sum_{j}\left(x_{j}-\mu\right)$; note that $\mathrm{E} u=0$. Using $\mathrm{d} \Omega=\Lambda(\mathrm{d} \Lambda)^{\prime}+(\mathrm{d} \Lambda) \Lambda^{\prime}+\mathrm{d} \Psi$, we get

$$
\begin{align*}
\mathrm{d} \mathcal{L}= & -n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime} \Omega^{-1}(\Omega-S)-\frac{1}{2} n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Psi) \Omega^{-1}(\Omega-S) \\
& +n \operatorname{tr} \Omega^{-1} u(\mathrm{~d} \mu)^{\prime} \\
= & -n\left[\operatorname{vec} \Omega^{-1}(\Omega-S) \Omega^{-1} \Lambda\right]^{\prime}(\mathrm{d} \lambda)-\frac{1}{2} n\left[\operatorname{vec} \Omega^{-1}(\Omega-S) \Omega^{-1}\right] G_{p}^{\prime} \psi \tag{7.9}\\
& +n\left(\operatorname{vec} \Omega^{-1} u\right)^{\prime}(\mathrm{d} \mu)
\end{align*}
$$

where $\lambda=\operatorname{vec} \Lambda$, and $\psi=\mathrm{w}(\Psi)=G_{p}^{\prime} \operatorname{vec} \Psi$ is the vector with the diagonal elements of Ψ. Thus, the first derivatives of L are

$$
\begin{align*}
& \frac{\partial \mathcal{L}}{\partial \mu^{\prime}}=n \operatorname{vec} u^{\prime} \Omega^{-1}=n u^{\prime} \Omega^{-1} \tag{7.10a}\\
& \frac{\partial \mathcal{L}}{\partial \lambda^{\prime}}=-n\left[\operatorname{vec} \Omega^{-1}(\Omega-S) \Omega^{-1} \Lambda\right]^{\prime}, \tag{7.10b}\\
& \frac{\partial \mathcal{L}}{\partial \psi^{\prime}}=-\frac{1}{2} n\left[\operatorname{vec} \Omega^{-1}(\Omega-S) \Omega^{-1}\right]^{\prime} G_{p}^{\prime} \tag{7.10c}
\end{align*}
$$

Setting the first derivatives equal to zero we get from 7.10a $u=0$ and so

$$
\begin{align*}
& \hat{\mu}=\frac{1}{n} \sum_{j=1}^{n} x_{j}=\bar{x}, \tag{7.11}\\
& \hat{S}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)\left(x_{j}-\bar{x}\right)^{\prime} \tag{7.12}
\end{align*}
$$

from (7.10b we get

$$
\begin{equation*}
(\hat{\Omega}-\hat{S}) \hat{\Omega}^{-1} \hat{\Lambda}=0 \tag{7.13}
\end{equation*}
$$

from 7.10 c) we get

$$
\begin{equation*}
\operatorname{dg}\left[(\hat{\Omega}-\hat{S}) \hat{\Omega}^{-1}\right]=0 \tag{7.14}
\end{equation*}
$$

7.4 The Hessian matrix

From (7.8) we obtain as the second differential of the log-likelihood equation:

$$
\begin{align*}
\mathrm{d}^{2} \mathcal{L}= & -\frac{1}{2} n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\mathrm{~d} \Omega-\mathrm{d} S)+n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\Omega-S) \\
& +n \operatorname{tr} \Omega^{-1}(\mathrm{~d} u)(\mathrm{d} \mu)^{\prime}-n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1} u(\mathrm{~d} \mu)^{\prime} \\
= & -\frac{1}{2} n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1}(\mathrm{~d} \Omega) \\
& -n(\mathrm{~d} \mu)^{\prime} \Omega^{-1}(\mathrm{~d} \mu)-2 n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Omega) \Omega^{-1} u(\mathrm{~d} \mu)^{\prime} \tag{7.15}
\end{align*}
$$

where $\Phi=2 S-\Omega$. Using $\mathrm{d} \Omega=\Lambda(\mathrm{d} \Lambda)^{\prime}+(\mathrm{d} \Lambda) \Lambda^{\prime}+\mathrm{d} \Psi$, we get

$$
\begin{align*}
\mathrm{d}^{2} \mathcal{L}= & -\frac{1}{2} n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1} \Lambda(\mathrm{~d} \Lambda)^{\prime} \Omega^{-1} \Lambda(\mathrm{~d} \Lambda)^{\prime} \\
& -\frac{1}{2} n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1} \Lambda(\mathrm{~d} \Lambda)^{\prime} \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime} \\
& -\frac{1}{2} n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime} \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime}-\frac{1}{2} n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime} \Omega^{-1} \Lambda(\mathrm{~d} \Lambda)^{\prime} \\
& -n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1} \Lambda(\mathrm{~d} \Lambda)^{\prime} \Omega^{-1}(\mathrm{~d} \Psi)-n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime} \Omega^{-1}(\mathrm{~d} \Psi) \\
& -\frac{1}{2} n \operatorname{tr} \Omega^{-1} \Phi \Omega^{-1}(\mathrm{~d} \Psi) \Omega^{-1}(\mathrm{~d} \Psi)-n(\mathrm{~d} \mu)^{\prime} \Omega^{-1}(\mathrm{~d} \mu) \\
& -2 n \operatorname{tr} \Omega^{-1} \Lambda(\mathrm{~d} \Lambda)^{\prime} \Omega^{-1} u(\mathrm{~d} \mu)^{\prime}-2 n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Lambda) \Lambda^{\prime} \Omega^{-1} u(\mathrm{~d} \mu)^{\prime} \\
& -2 n \operatorname{tr} \Omega^{-1}(\mathrm{~d} \Psi) \Omega^{-1} u(\mathrm{~d} \mu)^{\prime} \\
= & -\frac{1}{2} n\left(\operatorname{vec} \mathrm{~d} \Lambda^{\prime}\right)^{\prime}\left(\Omega^{-1} \Phi \Omega^{-1} \Lambda \otimes \Lambda^{\prime} \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -\frac{1}{2} n(\operatorname{vec} \mathrm{~d} \Lambda)^{\prime}\left(\Lambda^{\prime} \Omega^{-1} \Phi \Omega^{-1} \Lambda \otimes \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -\frac{1}{2} n\left(\operatorname{vec} \mathrm{~d} \Lambda^{\prime}\right)^{\prime}\left(\Omega^{-1} \Lambda \otimes \Lambda^{\prime} \Omega^{-1} \Phi \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -\frac{1}{2} n(\operatorname{vec} \mathrm{~d} \Lambda)^{\prime}\left(\Lambda^{\prime} \Omega^{-1} \Lambda \otimes \Omega^{-1} \Phi \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -n(\operatorname{vec} \mathrm{~d} \Psi)^{\prime}\left(\Omega^{-1} \Phi \Omega^{-1} \Lambda \otimes \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -n(\operatorname{vec} \mathrm{~d} \Psi)^{\prime}\left(\Omega^{-1} \Lambda \otimes \Omega^{-1} \Phi \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -\frac{1}{2} n(\operatorname{vec} \mathrm{~d} \Psi)^{\prime}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Psi) \\
& -n(\mathrm{~d} \mu)^{\prime} \Omega^{-1}(\mathrm{~d} \mu)-2 n(\operatorname{vec} \mathrm{~d} \mu)\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1} \Lambda\right)\left(\operatorname{vec} \mathrm{d} \Lambda^{\prime}\right) \\
& -2 n(\operatorname{vec} \mathrm{~d} \mu)^{\prime}\left(u^{\prime} \Omega^{-1} \Lambda \otimes \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Lambda) \\
& -2 n(\operatorname{vec} \mathrm{~d} \mu)^{\prime}\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right)(\operatorname{vec} \mathrm{d} \Psi) . \tag{7.16}
\end{align*}
$$

After some algebra it appears that the Hessian matrix of the log-likelihood has the form

$$
\mathrm{H} \mathcal{L}(\mu, \lambda, \psi)=\left(\begin{array}{lll}
\mathrm{H}_{\mu \mu} & \mathrm{H}_{\mu \lambda} & \mathrm{H}_{\mu \psi} \tag{7.17}\\
\mathrm{H}_{\lambda \mu} & \mathrm{H}_{\lambda \lambda} & \mathrm{H}_{\lambda \psi} \\
\mathrm{H}_{\psi \mu} & \mathrm{H}_{\psi \lambda} & \mathrm{H}_{\psi \psi}
\end{array}\right),
$$

with

$$
\begin{align*}
\mathrm{H}_{\mu \mu} & =-n \Omega^{-1}, \tag{7.18}\\
\mathrm{H}_{\mu \lambda} & =\mathrm{H}^{\prime}{ }_{\mu \mu}=-n\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right) K_{p q}-n\left(u^{\prime} \Omega^{-1} \Lambda \otimes \Omega^{-1}\right) \\
& =-n\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right)\left[\left(I_{p} \otimes \Lambda\right) K_{p q}+\left(\Lambda \otimes I_{p}\right)\right] \\
& =-n\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right)\left(K_{p p}+I_{p^{2}}\right)\left(\Lambda \otimes I_{p}\right) \\
& =-2 n\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right) N_{p}\left(\Lambda \otimes I_{p}\right) \tag{7.19}
\end{align*}
$$

$$
\begin{align*}
\mathrm{H}_{\mu \psi}= & \mathrm{H}_{\psi \mu}^{\prime}=-n\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right) G_{p}^{\prime}, \tag{7.20}\\
\mathrm{H}_{\lambda \lambda}= & -\frac{1}{2} n K_{q p}\left(\Omega^{-1} \Phi \Omega^{-1} \Lambda \otimes \Lambda^{\prime} \Omega^{-1}\right)-\frac{1}{2} n\left(\Lambda^{\prime} \Omega^{-1} \Phi \Omega^{-1} \Lambda \otimes \Omega^{-1}\right) \\
& -\frac{1}{2} n\left(\Lambda^{\prime} \Omega^{-1} \Lambda \otimes \Omega^{-1} \Phi \Omega^{-1}\right)-\frac{1}{2} n K_{q p}\left(\Omega^{-1} \Lambda \otimes \Lambda^{\prime} \Omega^{-1} \Phi \Omega^{-1}\right) \\
= & -n\left(\Lambda^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right) N_{p}[(\Omega \otimes \Phi)+(\Phi \otimes \Omega)]\left(\Omega^{-1} \Lambda \otimes \Omega^{-1}\right) \\
= & -2 n\left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) N_{p}\left(\Lambda \otimes \Omega^{-1}\right), \tag{7.21}\\
\mathrm{H}_{\lambda \psi}= & \mathrm{H}_{\psi \lambda}^{\prime}=-\frac{1}{2} n\left(\Lambda^{\prime} \Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) G_{p}^{\prime} \\
& -\frac{1}{2} n\left(\Lambda^{\prime} \Omega^{-1} \Phi \Omega^{-1} \otimes \Omega^{-1}\right) G_{p}^{\prime} \\
= & -n\left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) G_{p}^{\prime}, \tag{7.22}\\
\mathrm{H}_{\psi \psi}= & -\frac{1}{2} n G_{p}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) G_{p}^{\prime}=-\frac{1}{2} n\left(\Omega^{-1} \odot \Omega^{-1} \Phi \Omega^{-1}\right) . \tag{7.23}
\end{align*}
$$

Note that if $u=0$ (which holds at the maximum-likelihood estimate, see 7.10a), then $\mathrm{H}_{\mu \lambda}=0$ and $\mathrm{H}_{\mu \psi}=0$. It follows from (7.17)-(7.23) that the Hessian matrix is

$$
\begin{align*}
& \mathrm{H} \mathcal{L}(\mu, \lambda, \psi)=-n \times \\
& \qquad\left(\begin{array}{ccc}
\Omega^{-1} & 2\left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right) N_{p}\left(\Lambda \otimes I_{p}\right) & \left(u^{\prime} \Omega^{-1} \otimes \Omega^{-1}\right) G_{p}^{\prime} \\
2\left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1}{ }_{\left.u \otimes \Omega^{-1}\right)}\right. & 2\left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) N_{p}\left(\Lambda \otimes I_{p}\right) & \left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) G_{p}^{\prime} \\
G_{p}\left(\Omega^{-1}{ }_{\left.u \otimes \Omega^{-1}\right)}\right. & G_{p}\left(\Omega^{-1} \otimes \Omega^{-1} \Phi \Omega^{-1}\right) N_{p}\left(\Lambda \otimes I_{p}\right) & \frac{1}{2}\left(\Omega^{-1} \odot \Omega^{-1} \Phi \Omega^{-1}\right)
\end{array}\right) \tag{7.24}
\end{align*}
$$

Expressions for the individual elements of H , such as $\partial^{2} \mathcal{L} /\left(\partial \lambda_{i r} \partial \lambda_{j s}\right)$, can be obtained from (7.18)-(7.23) with the help of equations (2.29), 2.38), and 2.59)

7.5 The information matrix

Taking expectations of the Hessian matrix (7.24) and multiplying by -1 , we get as information matrix

$$
\begin{align*}
& \mathcal{I}(\mu, \lambda, \psi)=n \times \\
& \left(\begin{array}{ccc}
\Omega^{-1} & 0 & 0 \\
0 & 2\left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1} \otimes \Omega^{-1}\right) N_{p}\left(\Lambda \otimes I_{p}\right) & \left(\Lambda^{\prime} \otimes I_{p}\right) N_{p}\left(\Omega^{-1} \otimes \Omega^{-1}\right) G_{p}^{\prime} \\
0 & G_{p}\left(\Omega^{-1} \otimes \Omega^{-1}\right) N_{p}\left(\Lambda \otimes I_{p}\right) & \frac{1}{2}\left(\Omega^{-1} \odot \Omega^{-1}\right)
\end{array}\right) \tag{7.25}
\end{align*}
$$

From (7.25) we get

$$
\begin{equation*}
\mathcal{I}_{\lambda \lambda}=n\left(\Lambda^{\prime} \Omega^{-1} \Lambda\right) \otimes \Omega^{-1}+n K_{q p}\left(\Omega^{-1} \Lambda \otimes \Lambda^{\prime} \Omega^{-1}\right) \tag{7.26}
\end{equation*}
$$

and therefore, using (2.27) and (2.36),

$$
\begin{equation*}
\mathcal{I}\left(\lambda_{i j}, \lambda_{r s}\right)=n\left(\omega^{i r} \gamma_{j s}+\theta_{i s} \theta_{r j}\right) \tag{7.27}
\end{equation*}
$$

where $\Gamma=\Lambda^{\prime} \Omega^{-1} \Lambda$ and $\Theta=\Omega^{-1} \Lambda$. Similarly, we get

$$
\begin{equation*}
I\left(\psi_{k}, \lambda_{i j}\right)=n \omega^{i k} \theta_{k j} \tag{7.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{I}\left(\psi_{k}, \psi_{\ell}\right)=\frac{1}{2} n\left(\omega^{k \ell}\right)^{2} \tag{7.29}
\end{equation*}
$$

Equations (7.27)-7.29) coincide with the formulae derived without matrix differentiation techniques by Jöreskog (1972). If there are no other restrictions on the parameters and if the model is identified, then we can derive the asymptotic variances of (μ, λ, ψ) by inverting the information matrix.

References

Anderson, T.W., 1958, An introduction to multivariate statistical analysis, second edition 1984. Wiley, New York.

Bartholomew, D.J., 1987, Latent variable models and factor analysis. Griffin, London.
Binder, D.A. 1996, Linearization methods for single phase and two-phase samples: a cookbook approach. Survey Methodology 22, 17-22.

Dieudonné, J., 1960, Foundations of modern analysis, 2nd edition (1969). Academic Press, New York.

Jöreskog, K.G., 1971, Simultaneous factor analysis in several populations. Psychometrika 36(4), pp. 409-426.

Lawley, D.N. and A.E. Maxwell, 1963, Factor analysis as a statistical method, second edition, 1971. Buttersworth, London.

Magnus, J.R., 1988, Linear structures. Griffin, London.
Magnus, J.R. and H. Neudecker, 1988, Matrix differential calculus. Wiley, New York.
Morrison, D.F., 1967, Multivariate statistical methods, second edition 1976. McGrawHill, New York.

Neudecker, H. and A. Satorra, 1991, Linear structural relations: gradient and Hessian of the fitting function. Statistics and Probability Letters 11, 57-61.

Särndal, C.-E., Swensson, B., and Wretman, J., 1992, Model Assisted Survey Sampling. New York: Springer.

Zeelenberg, K., 1997, A simple derivation of the linearization of the regression estimator, Survey Methodology 23, 77-8.

