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A S M D

An summary of first and second-order differentiation of matrix functions is given.

As example, these techniques are applied to maximum-likelihood estimation of

the multivariate linear model and the factor-analysis model.

Keywords: matrix differentiation, multivariate linear model, factor analysis,

regression estimator

AEA-code: C30
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1 Introduction

In this paper an overview of matrix differentiation techniques and some applications

is given. In section 2 we collect some matrix results from Magnus (1988). Sections

3 and 4, drawn from Magnus and Neudecker (1988), treat first-order differentiation,

respectively second-order differentiation. Section 5 gives an application to maximum-

likelihood estimation of the multivariate linear model, section 6 to maximum-likelihood

estimation of the factor-analysis model, and section 7 to linearization of the regression

estimator.

2 Preliminaries

This section brings together several results from matrix analysis that are useful for ma-

trix differentiation techniques; see Magnus (1988) for much more details and proofs.

We use several operators such as tr (trace of a matrix) and vec (vector of a matrix).

These operators have the highest priority, e.g. α tr(A) means: α × [tr(A)]. If the opera-

tor is followed by a space then it extends until the next space, closing bracket, comma,

or period, e.g. tr AB means: tr(AB).

2.1 The trace

Let A and B be n × n-matrices. The trace of a matrix is defined as the sum of its

diagonal elements:

tr A =

n∑
i=1

aii. (2.1)

The trace has the following properties:

tr(A + B) = tr A + tr B, (2.2)



tr(A′) = tr A, (2.3)

tr AB = tr BA = tr A′B′ = tr B′A′, (2.4)

trαA = α tr A. (2.5)

2.2 The Kronecker product

Let A be an m × n-matrix and B a p × q-matrix. The Kronecker product of A and B is

the mp × nq-matrix

A ⊗ B =


a11B a12B . . . a1nB

a21B a22B . . . a2nB
...

...
. . .

...

am1B am2B . . . amnB


(2.6)

The Kronecker product has the same priority as the ordinary product. For example,

A⊗B+C = (A⊗B)+C, AB⊗C = (AB)⊗C. Note that ai jbrs = (A⊗B)(i−1)p+r,( j−1)q+s (i =

1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q).

Let C and D be matrices, x and y vectors, and α a scalar. The Kronecker product has

the following properties (it is assumed that any product and sum exist):

(A ⊗ B)′ = A′ ⊗ B′, (2.7)

(A + B) ⊗ (C + D) = A ⊗C + A ⊗ D + B ⊗C + B ⊗ D, (2.8)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD, (2.9)

αA = α ⊗ A = A ⊗ α = Aα, (2.10)

x ⊗ y′ = xy′ = y′ ⊗ x. (2.11)

If A and B are square of order m respectively n, then

tr(A ⊗ B) = (tr A)(tr B), (2.12)

(A ⊗ B)−1 = A−1 ⊗ B−1, (2.13)

(A ⊗ B)+ = A+ ⊗ B+, (2.14)

with a + as superscript denoting the Moore-Penrose inverse,

r(A ⊗ B) = r(A)r(B); (2.15)

if A is an m × m-matrix and B and p × p-matrix, then

|A ⊗ B| = |A|p|B|m; (2.16)

if λi are the characteristic values (i = 1, 2, ...,m) of A with characteristic vectors xi and

µ j ( j = 1, 2, ..., p) the characteristic values of B, then the characteristic values of A⊗ B

are λiµ j with characteristic values xi ⊗ y j.
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2.3 The vec-operator

Let A be an m × n-matrix and ai the i-th column of A. Then vec A is the mn-vector

defined by

vec A =


a1

a2
...

an


. (2.17)

Note that ai j = (vec A)( j−1)m+i.

Let A, B, C, and D be matrices, and x and y vectors. The vec-operator has the following

properties (it is assumed that any product exists):

vec x′ = vec x = x, (2.18)

vec xy′ = y ⊗ x, (2.19)

tr AB = (vec A′)′(vec B), (2.20)

tr ABCD = (vec D′)′(C′ ⊗ A)(vec B) = (vec D)′(A ⊗C′)(vec B′), (2.21)

vec ABC = (C′ ⊗ A)(vec B), (2.22)

ABx = (x′ ⊗ A)(vec B) = (A ⊗ x′)(vec B′). (2.23)

If A is an m × n-matrix and B an n × q-matrix, then

vec AB = (B′ ⊗ Im)(vec A) = (B′ ⊗ A)(vec In) = (Iq ⊗ A)(vec B). (2.24)

If A, B, and V are square matrices of the same order and V is symmetric, then

(vec V)′(A ⊗ B)(vec V) = (vec V)′(B ⊗ A)(vec V). (2.25)

If x is an m-vector and y an n-vector, then from (2.19) and (2.24) we have

x ⊗ y = vec(yx′) = (Im ⊗ y)x = (x ⊗ In)y. (2.26)

Let X be an m× n-matrix, Y a p× q-matrix, A an n× q-matrix, and B an m× p-matrix,

such that (vec X)(vec Y)′ = A ⊗ B. Then

xi jyrs = a jsbir,

i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q. (2.27)

Similar formulae hold for matrices with the structure of (vec X)(vec Y)′. An example

is the covariance matrix of the vec of a stochastic matrix: if Var(vec X) = E(vec X −

E vec X)(vec X − E vec X)′ = A ⊗ B, then

cov(xi j, xrs) = a jsbir,

i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q. (2.28)
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Another example is the matrix with second partial derivatives of a real-valued matrix

function: if ∂2φ/(∂(vec X)∂(vec X)′) = A ⊗ B, then

∂2φ

∂xi j∂xrs
= a jsbir,

i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q; (2.29)

see section 4.4.

2.4 The commutation matrix

The commutation matrix is the permutation matrix that transforms the vec of a matrix

into the vec of the transpose of that matrix:

Kmn(vec A) = vec A′, (2.30)

where A is an m×n-matrix and Kmn is the mn×mn-commutation matrix for matrices of

order (m, n). Note that vec A′ is the vector with the rows of A stacked; it is sometimes

denoted as vec(A).

The commutation matrix Kmm will be denoted by Km. Since Kmn is a permutation

matrix, it is orthogonal and thus

K−1
mn = K′mn = Knm. (2.31)

Also

Km1 = K1m = Im. (2.32)

The commutation matrix derives its name from the fact that it reverses (‘commutes’)

the order of Kronecker products:

Kpm(A ⊗ B) = (B ⊗ A)Kqn, (2.33)

where B is a p × q-matrix. The commutation matrix can be used to write the vec of a

Kronecker product as the Kronecker product of the vec’s:

vec(A ⊗ B) = (In ⊗ Kqm ⊗ Ip)[(vec A) ⊗ (vec B)]. (2.34)

An explicit expression for the commutation matrix is

Kmn =

m∑
i=1

n∑
j=1

(Hi j ⊗ H′i j), (2.35)

where Hi j is the m × n-matrix with 1 as element (i, j) and 0 elsewhere.

Let X be an m× n-matrix, Y a p× q-matrix, A an m× q-matrix, and B an n× p-matrix,

such that (vec X)(vec Y)′ = Knm(A ⊗ B). Then

xi jyrs = aisb jr,
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i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q. (2.36)

Similar formulae hold for matrices with the structure of (vec X)(vec Y)′. An example

is the covariance matrix of the vec of a stochastic matrix: if Var(vec X) = E(vec X −

E vec X)(vec X − E vec X)′ = Knm(A ⊗ B), then

cov(xi j, xrs) = aisb jr,

i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q. (2.37)

Another example is the matrix with second partial derivatives of a real-valued matrix

function: if ∂2φ/(∂(vec X)∂(vec X)′) = Knm(A ⊗ B), then

∂2φ

∂xi j∂xrs
= aisb jr,

i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; s = 1, 2, ..., q; (2.38)

see section 4.4.

2.5 The duplication matrix

Let A be a n × n-matrix and let v(A) denote the 1
2 n(n + 1)-vector that is obtained from

vec A by deleting all supradiagonal elements of A. If A is symmetric then v(A) contains

only the distinct elements of A. The duplication matrix Dn is the n2 × 1
2 (n + 1)-matrix

that transforms, for symmetric A, v(A) into vec A:

Dn v(A) = vec A. (2.39)

The Moore-Penrose inverse of the duplication matrix is

D+
n = (D′nDn)−1D′n. (2.40)

It is easily seen that for symmetric A:

v(A) = D+
n vec A. (2.41)

An explicit expression for the duplication matrix is

Dn =

n∑
i= j

n∑
j=1

(vec Ti j)u′i j, (2.42)

where Tii = Eii, Ti j = Ei j + E ji (i , j), Ei j is the n × n-matrix with 1 as element (i, j)

and 0 elsewhere, and ui j = v(Ei j) (note that Ei j = eie′j). Also

DnD+
n = 1

2 (In2 + Kn), (2.43)

D+
n Dn = I 1

2 n(n+1)
, (2.44)

and

[D′n(A ⊗ A)Dn]−1 = D+
n (A−1 ⊗ A−1)D+′

n . (2.45)
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The n2 × n2-matrix 1
2 (In2 + Kn) will be denoted by Nn, and plays an important part in

distribution theory, especially normal distribution theory. There holds

Nn vec A = vec 1
2 (A + A′), (2.46)

Nn(A ⊗ A)Nn = Nn(A ⊗ A) = (A ⊗ A)Nn, (2.47)

and

Nn = N′n = N2
n , (2.48)

so that Nn is orthogonal and idempotent.

2.6 Diagonality

Let A be a square n×n-matrix and define w(A) as the vector containing just the diagonal

elements of A:

w(A) = (a11, a22, ..., ann)′. (2.49)

We define the n× n2-matrix Gn as the matrix that transforms for diagonal A, w(A) into

vec(A):

G′nw(A) = vec A. (2.50)

An explicit expression for Gn is

Gn =

n∑
i=1

ei(vec Eii)′, (2.51)

where ei is the n-vector with 1 as element i and 0 elsewhere, and Eii is the n×n-matrix

with 1 as element (i, i) and 0 elsewhere. It can be shown that

GnKn = GnNn = Gn,

GnG′n = In, (2.52)

and

G+
n = G′n. (2.53)

The matrix Gn eliminates from vec A the off-diagonal elements, since for every square

matrix A,

Gn(vec A) = w(A). (2.54)

and

G′n w(A) = G′nGn(vec A) = vec(dg A), (2.55)

where dg A is the diagonal matrix containing the diagonal elements of A. The matrix

Gn converts a Kronecker product into a Hadamard product:

Gn(A ⊗ B)G′n = A � B, (2.56)

where A and B are matrices of the same size and the Hadamard product of two matrices

is defined as their element-wise product, i.e. (A � B)i j = ai jbi j.
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Let X be an m× n-matrix, y a p-vector, A an n× p-matrix and B an m× p-matrix, such

that (vec X)y′ = (A ⊗ B)G′p. Then

xi jyr = a jrbir, i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p. (2.57)

Similar formulae hold for other matrices with the same structure as (vec X)y′. An

example is the covariance matrix of a stochastic vector and the vec of a stochastic

matrix: if Cov(vec X, y) = E(vec X − E vec X)(y − E y)′ = (A ⊗ B)G′p, then

cov(xi j, yr) = a jrbir, i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p. (2.58)

Another example is the matrix with second partial cross derivatives of a vector and a

real-valued matrix function: if ∂2φ/(∂(vec X)∂(y)′) = (A ⊗ B)G′p, then

∂2φ

∂xi j∂yr
= a jrbir, i = 1, 2, ...,m; j = 1, 2, ..., n; r = 1, 2, ..., p; (2.59)

see section 4.4.

3 First-order differentiation

3.1 Differentiability of vector functions

Let f be a function from an open set S ⊂ Rm to Rn; let x0 ∈ S and u ∈ Rm such that

x0 + u ∈ S . The function f is differentiable at x0 if there exists a real n×m-matrix Ax0 ,

depending on x0 but not on u, such that

f (x0 + u) = f (x0) + Ax0u + o(u), (3.1)

where o(u) is a function such that lim|u|→0|o(u)|/|u| = 0. The matrix Ax0 is called

the (first) derivative of f at x0; it is denoted by D f (x0) or by ∂ f /∂x′cx=x0 , and is

called the Jacobian matrix of f at x0, and if m = n, its determinant is called the

Jacobian of f . The Jacobian matrix D f is equal to the matrix of partial derivatives, i.e.

D f (x)i j = ∂ fi/∂x j. The linear function d f x0 : Rm → Rn defined by d f x0(u) = Ax0 × u

is called the (first) differential of f at x0; instead of u we often write d x, so that:

d f = Ax0 × (d x). Alternatively if A is a matrix such that d f = A d x then A is

the derivative of f at x0 and contains the partial derivatives. This one-to-one relation

between differentials and derivatives is very useful, since differentials are relatively

easy to manipulate.

From (3.1) we see that the differential corresponds to the linear part of the function,

which can also be written as

y − y0 = Ax0(x − x0),

where y0 = f (x0). Therefore the differential of a function is the linearization of the

function: it is the equation of the hyperplane through the origin that is parallel to the

hyperplane tangent to the graph of f at x0; so the linearized function can be written as

f (x) � f (x0) + Ax0(x − x0). (3.2)

7



3.2 Differentiability of matrix functions

A matrix function F from an open set S ⊂ Rm×n to Rp×q is differentiable if vec F is

differentiable, i.e. if there exists a real pq × mn-matrix A, depending on X0, such that

vec F(X0 + U) = vec F(X0) + AX0(vec U) + vec o(U), (3.3)

where U is a p × q-matrix such that X0 + U ∈ S , and lim|U |→0|o(U)|/|U | = 0 with

the norm of a matrix X defined by |X| = (tr X′X)
1
2 . The differential of F at X0 is the

m × n-matrix function d FX0 defined by vec d FX0(U) = AX0(vec U). The pq × mn-

matrix D(vec F) is called the Jacobian matrix of F at X0 and is denoted by D F(X0) or

by ∂(vec F)/∂(vec X)′cX=X0 .

If either F or X is a scalar then D F is a vector. It is then useful to define some other

matrices that also contain the partial derivatives. If F is a scalar function of a matrix

(i.e. p = q = 1), then we define the m × n-matrix ∂F(X)/∂X implicitly by

D F(X) =

(
vec

∂F(X)
∂X

)′
, (3.4)

i.e. (∂F/∂X)i j = ∂F/∂xi j. If X is a scalar (i.e. m = n = 1), then we define the

p × q-matrix ∂F(X)/∂X implicitly by

D F(X) = vec
∂F(X)
∂X

, (3.5)

i.e. (∂F/∂X)i j = ∂Fi j/∂X. In all other cases the only useful definition of derivative is

the Jacobian matrix ∂ vec F/∂(vec X)′, because only then there exists a general chain

rule and the determinant of the derivative equals the Jacobian. Note that if X is a

vector (i.e. n = 1) and F a scalar (i.e. p = q = 1), then D F is a row vector and

∂F/∂X = (D F)′ is a column vector.

An explicit expression for the Jacobian matrix is

D F =

m∑
i=1

n∑
j=1

(
vec

∂F
∂xi j

)
(vec Hi j)′, (3.6)

where Hi j is the m × n-matrix with 1 as element (i, j) and 0 elsewhere. If n = 1, then

(3.6) simplifies to

D F =

m∑
i=1

(
vec

∂F
∂xi

)
e′i , (3.7)

where ei is the m-vector with 1 as element i and 0 elsewhere.

3.3 Chain rule

Let S be an open set in Rn and let f : S → Rm be differentiable at a point x0 in S . Let T

be a subset of Rm such that f (x) ∈ T for all x ∈ S and let g : T → Rp be differentiable

at a point y0 = f (x0) ∈ T . Then the composite function h = g ◦ f : S → Rp defined

by h(x) = g[ f (x)] is differentiable at x0, and there holds D h(x0) = D g(y0) D f (x0) and

d hx0(u) = d gy0[d fx0(u)].
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3.4 Properties of differentials

Let A be a matrix of constants, F and G matrix functions, and α a real scalar. Then,

assuming that all differentials, products, inverses, etc. exist, we have

d A = 0, (3.8)

d(αF) = α d F, (3.9)

d(F + G) = d F + d G, (3.10)

d(FG) = (d F)G + F(d G), (3.11)

d(F ⊗G) = (d F) ⊗G + F ⊗ (d G), (3.12)

d(F′) = (d F)′, (3.13)

d(vec F) = vec(d F), (3.14)

d(tr F) = tr(d F), (3.15)

d F−1 = −F−1(d F)F−1, (3.16)

d|F| = tr(F# d F), (3.17)

where F# is the adjoint matrix (i.e. the transpose of the matrix with cofactors) of F. In

particular, at points where F has full rank:

d|F| = |F| tr(F−1 d F). (3.18)

The use of differentials makes it unnecessary to remember many matrix derivatives,

since they follow easily from the above properties.

Formula (3.16) is easily proved by taking the differential of FF−1 = I, and rearranging.

As an example of the chain rule we will prove (3.17). Define the function g : Rm×n →

R by g(Y) = |Y |. Note that g is a function without restrictions and that all variables yi j

are independent. Then |F| is the composite of g and F. Expanding |Y | along the i-th row

we get |Y | =
∑

j yi j|Yi j|, where |Yi j| is the cofactor of yi j. Since Yi j is independent of yi j,

there holds ∂|Y |/∂yi j = Yi j and thus d|Y | =
∑

i
∑

j Yi j d yi j = tr(Y# d Y). By the chain

rule we then have d F = tr(F# d F). Note that (3.17) and (3.18) hold independently of

any restrictions, such as symmetry, on F.

3.5 Examples

Example 3.1. Some special cases for real functions of one variable are

d xn = nxn−1 d x (3.19)

d ex = ex d x, (3.20)

d log x =
d x
x

(x > 0). (3.21)
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Example 3.2. For the real function f (x, y) = x2 + 2xy − y2 we have

d f = d(x2) + 2 d(xy) − d(y2) = 2x d x + 2(y d x + x d y) − 2y d y

= 2(x + y) d x + 2(x − y) d y.

Example 3.3. For the real function f (x, y) = xαyβ (x > 0, y > 0) we have

d log f = α d log x + β d log y.

Example 3.4. (Implicit differentiation) Consider the equation

f (x, y) = 0 (3.22)

Suppose (3.22) holds on an open set in R2 in the sense that there exists a function

g : R → R implicitly defined by f [x, g(x)] = 0. Define the function h : R → R by

x 7→ f [x, g(x)] and the function φ : R2 → R by x 7→ [x, g(x)]. Then h is the composite

of f and φ, so that by the chain rule we have

h′(x) = D g(x) = D φ × D f =

 1

g′(x)

 (∂ f
∂x

∂ f
∂y

)
=
∂ f
∂x

+
∂ f
∂y

g′(x).

On the other hand, from (3.22) we have h′(x) = 0, so that

∂y
∂x

= g′(x) = −
∂ f /∂x
∂ f /∂y

. (3.23)

This result also follows by the chain rule for differentials, since it implies

∂ f
∂x

d x +
∂ f
∂y

∂y
∂x

d x = 0,

from which (3.23) follows after rearranging and dividing through by d x.

Example 3.5. d(Ax) = A(d x) and so

D(Ax) =
∂Ax
∂x′

= A. (3.24)

Example 3.6. d(x′Ax) = x′A(d x) + (d x)′Ax = x′(A + A′)(d x) and so

D(x′Ax) =
∂x′Ax
∂x′

= x′(A + A′) (3.25)

and
∂x′Ax
∂x

= (A + A′)x. (3.26)

Example 3.7. d(y′Az) = y′(d A)z = (z′ ⊗ y′)(vec d A), so that

D(y′Az) =
∂y′Az

∂(vec A)′
= z′ ⊗ y′, (3.27)

and, with (2.19),
∂y′Az
∂A

= yz′. (3.28)

Example 3.8. d(AXB) = A(d X)B, so that d(vec AXB) = (B′⊗A)(vec d X) and therefore

D(AXB) =
∂ vec AXB
∂(vec X)′

= B′ ⊗ A. (3.29)
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Example 3.9. An application of (3.16) is

D vec X−1 =
∂ vec X−1

∂(vec X)′
= −X′−1 ⊗ X−1, (3.30)

and, using (2.29), we get
∂xi j

∂xrs
= −xir xs j.

Example 3.10.

D vec(X ⊗ Y) =
∂ vec(X ⊗ Y)
∂(vec Z)′

=?????? (3.31)

Example 3.11. An application of (3.18) is: d log|A| = |A|−1 d|A| = tr(A−1 d A) =

(vec A′−1)′(d vec A), and so if A is a function of a scalar α, there holds

d log|A| = (vec A′−1)′
∂ vec A
∂α

dα = tr A′−1 ∂A
∂α

dα, (3.32)

and therefore
∂ log|A|
∂α

= tr A′−1 ∂A
∂α

. (3.33)

Example 3.12. Let X be an m × n-matrix; then d(X′X) = (d X′)X + X′(d X), so that

d vec(X′X) = (X′ ⊗ In)(vec d X′) + (In ⊗ X′)(vec d X)

= (X′ ⊗ In)Kmn(vec d X) + (In ⊗ X′)(vec d X)

= Kn(In ⊗ X′)(vec d X) + (In ⊗ X′)(vec d X)

= 2Nn(In ⊗ X′)(vec d X);

therefore

D vec X′X =
∂ vec X′X
∂(vec X)′

= 2Nn(In ⊗ X′).

Similarly,

D vec XX′ =
∂ vec XX′

∂(vec X)′
= 2Nm(X ⊗ Im). (3.34)

Example 3.13. Let X be an m × n-matrix and A and m × m-matrix. Then d tr X′AX =

tr(d X)′AX + tr X′A(d X) = 2 tr X′A(d X) = 2(vec A′X)′(vec d X), so that

D tr X′AX =
∂ tr X′AX
∂(vec X)′

= 2(vec A′X)′,

and
∂ tr X′AX

∂X
= 2A′X.

Example 3.14. Let X be an n × n-matrix. Then d tr X2 = tr[(d X)X + X(d X)] =

2 tr X(d X) = 2(vec X′)′(vec d X), so that

D tr X2 =
∂ tr X2

∂(vec X)′
= 2(vec X)′,

and
∂ tr X2

∂X
= 2X.

Example 3.15. Let X be an n×n-matrix. Then d log|X| = tr X−1(d X) = (vec X′−1)′(vec d X),

so that

D log|X| =
∂ log|X|
∂(vec X)′

= (vec X′−1)′,

and
∂ log|X|
∂X

= X′−1.
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4 Second-order differentiation

4.1 Twice-differentiability

Let f be a function from an open set S ⊂ Rm to Rn; let x ∈ S , u ∈ Rm, and let f be

differentiable at x. The function f is twice differentiable at x if D f is differentiable at

x, i.e. if there exists a real mn × m-matrix B, depending on x but not on u, such that

vec D f (x + u) = vec D f (x) + B(x)u + o(u), (4.1)

where o(u) is a function such that lim|u|→0|o(u)|/|u| = 0. The matrix B is the derivative

of vec D f at x, i.e. B(x) = D[D f ] = ∂[vec D f (x)]/∂x′; note that for D f to be

differentiable, it must exist in a neighborhood of x, i.e. f must be differentiable in

a neighborhood of x.

It will be easier to work with the mn × m-matrix H f (x) = D[D f ]′ = KmnB(x) =

∂ vec[D f (x)]′/∂x′; this matrix is called the Hessian matrix of f at x, and if n = 1, its

determinant is called the Hessian of f . The Hessian matrix is equal to the Hessian

matrices of the component functions of f stacked below each other:

H f (x) =


H f1(x)

H f2(x)
...

H fn(x)


. (4.2)

It can be shown that the component Hessian matrices of f at x are symmetric, i.e.

H fi(x) = (H fi(x))′ if f is twice differentiable at x (Dieudonné, 1960, section 8.12).

Note that H f also exists if the partial derivatives ∂ f /∂xi are differentiable and D f is

not differentiable; then the H fi are not necessarily symmetric (in this case a sufficient

condition for H fi to be symmetric is that each partial derivative is continuous).

4.2 The second differential

The second differential is the differential of the first differential:

d2 f = d(d f ), (4.3)

where we consider d f as a function of x only, holding d x constant. The second differ-

ential exists if and only if f is twice differentiable, since

d2 f = d(d f ) = d[D f (x) d x] = [(d x)′ ⊗ In] vec[d D f (x)]

= [(d x)′ ⊗ In]
∂ vec D f (x)

∂x′
(d x) = [(d x)′ ⊗ In]B(x)(d x)

= [(d x)′ ⊗ In]Kmn H f (x)(d x) = [In ⊗ (dx)′] H f (x)(d x)

=


(d x)′ H f1(x)(d x)

(d x)′ H f2(x)(d x)
...

(d x)′ H fn(x)(d x)


12



Thus d2 f is a n-vector of quadratic forms in H fi(x).

Alternatively, if f is twice differentiable and B(x) is an mn ×m-matrix such that for all

d x

d2 f = [In ⊗ (dx)′]B(x)(dx), (4.4)

then

H f (x) = 1
2 {B(x) + [B′(x)]v}, (4.5)

where

B(x) =


B1(x)

B2(x)
...

Bn(x)


, [B′(x)]v =


B′1(x)

B′2(x)
...

B′n(x)


, (4.6)

and each Bi is a m × m-matrix. For example, if n = 1 then

d2 f = (dx)′B(x)(dx), (4.7)

for all d x, if and only if

H f (x) = 1
2 [B(x) + [B′(x)], (4.8)

4.3 Matrix functions

A matrix function F from an open set S ⊂ Rm×n to Rp×q is twice differentiable if vec F

is twice differentiable. The Hessian matrix H F of F is the mnpq × mn-matrix

H F(X) =



H F11(vec X)
...

H Fp1(vec X)
...
...

H F1q(vec X)
...

H Fpq(vec X)



,

where each Hk` is a mn × mn-matrix. The second differential of F is defined as

d2 F(X; d X) = d[d F(X; d X)], i.e. vec d2 F(X; d X) = d2[vec F(vec X; vec d X)]. If

F is twice differentiable then

vec d2 F = [Ipq ⊗ (vec d X)′]B(X)(vec d X)] (4.9)

for every d X ∈ Rp×q, if and only if

H F(X) = 1
2 {B(X) + [B′(X)]v}. (4.10)

An explicit expression for the Hessian matrix is

H F =

m∑
i=1

n∑
j=1

m∑
k=1

n∑
`=1

(
vec

∂2F
∂xk`∂xi j

)
⊗ (vec Hi j) ⊗ (vec Hk`)′ (4.11)

13



where Hi j is the m × n-matrix with 1 as element (i, j) and 0 elsewhere. If n = 1, then

(4.11) simplifies to

H F =

m∑
i=1

n∑
j=1

(
vec

∂2F
∂x j∂xi

)
⊗ eie′j, (4.12)

where ei is the m-vector with 1 as element i and 0 elsewhere.

4.4 Examples

Example 4.1. (Example 3.2 continued). The second differential of f (x, y) = x2 +2xy−

2y2 is

d(d f ) = d[2(x + y) d x + 2(x − y) d y] = 2(d x)2 + 4(d x)(d y) − 2(d y)2

so that

B(x) =

2 4

0 −2

 .
Thus the Hessian matrix is

H f = 1
2 [B(x) + B′(x)] =

2 2

2 −2

 .
Example 4.2. Often the second differential of a real-valued matrix function has the

form tr B(d X)′C(d X) or tr B(d X)C(d X). Then the following result is useful.

Let φ : S ⊂ Rm×n → R be a real-valued matrix function.

a. Suppose d2φ = tr B(dX)′C(dX) with B an n×n-matrix and C an m×m-

matrix. Then d2φ = (d vec X)′(B′ ⊗C)(d vec X), so that

H φ(X) = 1
2 (B′ ⊗C + B ⊗C′), (4.13)

and

∂2φ(x)
∂xi j∂xrs

= 1
2 (bs jcir + b jscri),

i, r = 1, 2, ...,m; j, s = 1, 2, ..., n. (4.14)

b. Suppose d2 φ = tr B(d X)C(d X) with B and C n × m-matrices. Then

d2φ = (d vec X′)′(B′⊗C)(d vec X) = (d vec X)′Knm(B′⊗C)(d vec X),

so that

H φ(X) = 1
2 Knm(B′ ⊗C + C′ ⊗ B), (4.15)

and

∂2φ(x)
∂xi j∂xrs

= 1
2 (bsic jr + b jrcsi),

i, r = 1, 2, ...,m; j, s = 1, 2, ..., n. (4.16)
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Equations (4.14) and (4.16) can be derived from respectively (4.13) and (4.15) using

(2.29) and (2.38).

Some special cases are:

a. (Example 3.13 continued) For φ(X) = tr X′AX with A an m × m-matrix, we get

d2 φ(X) = 2 tr(d X)′A(d X), so that

H(tr X′AX) = In ⊗ (A + A′), (4.17)

and

∂2 tr X′AX
∂xi j∂xrs

=δ js(air + ari);

i, r = 1, 2, ...,m; j, s = 1, 2, ..., n. (4.18)

where δ js is the Kronecker delta (δ j j = 1, and δ js = 0 for j , s).

b. (Example 3.14 continued) For φ(X) = tr X2 we get d φ(X) = tr[(d X)X + X(d X)]

and d2 φ(X) = 2 tr(d X)2, so that

H(tr X2) = Kn(In ⊗ In + In ⊗ In) = 2Kn, (4.19)

and

∂2 tr X2

∂xi j∂xrs
=2δisδ jr,

i, r = 1, 2, ...,m; j, s = 1, 2, ..., n. (4.20)

c. (Example 3.15 continued) For φ(X) = log|X|, we get d φ(X) = tr X−1(d X) and

d2 φ(X) = − tr X−1(d X)X−1(d X) and therefore

H log|X| = −Kn(X′−1 ⊗ X−1), (4.21)

and

∂2 log|X|
∂xi j∂xrs

= − xsix jr,

i, r = 1, 2, ...,m; j, s = 1, 2, ..., n. (4.22)

Note that if X is a symmetric positive definite matrix, then d2 log|X|=−(vec d X)′(X−1⊗

X−1)(vec d X) < 0, so that log|X| is a strictly concave function on the space of

positive definite matrices.

Example 4.3. (Example 3.12 continued) Consider the matrix function F : Rn → Rn×n,

defined by F(x) = 1
2 xx′, where x is a n-vector. There holds d F(x) = 1

2 [x(d x)′+(d x)x′]

so that, cf. (3.34),

D F(x) = 2Nn(x ⊗ In)

and d2 F(x) = (d x)(d x)′, so that d2 vec F(x) = vec(d x)(d x)′ = (In ⊗ d x) d x. Now,

d x = [In ⊗ (d x)′](vec In), so that

In ⊗ d x = In ⊗ [In ⊗ (d x)′](vec In)
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= [In ⊗ In ⊗ (d x)′][In ⊗ (vec In)]. (4.23)

Therefore

d2 vec F(x) = [In2 ⊗ (d x)′](In ⊗ vec In) d x,

and

H F(x) = 1
2 {In ⊗ vec In + [(In ⊗ vec In)′]v}. (4.24)

There holds

In ⊗ vec In =


vec In 0 . . . 0

0 vec In . . . 0
...

...
. . .

...

0 0 . . . vec In


=



E11

E12
...

E1n

E21
...
...

Enn



, (4.25)

so that

[(In ⊗ vec In)′]v =



E′11

E′12
...

E′1n

E′21
...
...

E′nn



=



E11

E21
...

En1

E12
...
...

Enn



= (Kn ⊗ In)(In ⊗ vec In). (4.26)

Therefore

H F(x) = [ 1
2 (In2 + Kn) ⊗ In](In ⊗ vec In)

= (Nn ⊗ In)(In ⊗ vec In). (4.27)

We can also use the explicit expression (4.12), which in this case is more straightfor-

ward. There holds
∂2F(x)
∂x j∂xi

= 1
2 (eie′j + e je′i), (4.28)

and thus

H F(x) = 1
2

n∑
i=1

n∑
j=1

[vec(eie′j + e je′i)] ⊗ eie′j

= 1
2

n∑
i=1

n∑
j=1

(e j ⊗ ei ⊗ e′j ⊗ ei + ei ⊗ e j ⊗ e′j ⊗ ei)

= 1
2

n∑
i=1

n∑
j=1

[(e j ⊗ e′j ⊗ ei ⊗ ei + (Kn ⊗ In)(e j ⊗ e′j ⊗ ei ⊗ ei)]

= [ 1
2 (In2 + Kn) ⊗ In](In ⊗ vec In)

= (Nn ⊗ In)(In ⊗ vec In). (4.29)
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5 Linearization of the regression estimator

Design-based sampling variances of non-linear statistics are often calculated by means

of a linear approximation obtained by a Taylor expansion; examples are the variances

of the general regression coefficient estimator and the regression estimator. The lin-

earizations usually need some complicated differentiations. In this section, taken from

Zeelenberg (1997), it is shown how matrix calculus can simplify these derivations, to

the extent that even the Taylor expansion of the regression coefficient estimator can be

derived in one line, which should be compared with the nearly one page that Särndal

et al (1992, pp. 205-6) need. To be honest, the use of matrix calculus requires some

more machinery to be set up, which is not needed for traditional methods. However

this set-up can be regarded as an investment: once it has been learned, it can be used

fruitfully in many other applications. See also Binder (1996) for applications similar

to those of this section.

The π-estimator (Horvitz-Thompson estimator) of the finite population regression co-

efficient (cf. Särndal et al, 1992, section 5.10) is

B̂ = T̂−1 t̂, (5.1)

where

T̂ =
∑
k∈s

xkx′k
πk

,

t̂ =
∑
k∈s

xkyk

πk
,

yk is the variable of interest for individual k, xk is the vector with the auxiliary variables

for individual k, πk is the inclusion probability for individual k, and s denotes the

sample. Taking the total differential of (5.1), and evaluating at the point where T̂ = T ,

t̂ = t, we get

d B̂ = −T−1(d T̂ )T−1t + T−1(d t̂). (5.2)

Because of the connection between differentials and linear approximation, as given in

equation (3.2), it immediately follows that (5.2) corresponds to the linearization of the

regression coefficient estimator:

B̂ � B − T−1(T̂ − T )T−1t + T−1(t̂ − t) = B + T−1(t̂ − T̂ B),

where B = T−1t.

The regression estimator of a population total is (cf. Särndal et al, 1992, section 6.6)

t̂yr = t̂yπ + (tx − t̂xπ)′B̂, (5.3)

where t̂yπ is the π-estimator of the variable of interest, tx is the vector with the pop-

ulation totals of the auxiliary variables, t̂xπ is the vector with the π-estimators of the

auxiliary variables, and B̂ is the estimator of the regression coefficient of the auxiliary
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variables on the variable of interest. Taking the total differential of (5.3), and evaluat-

ing at the point where t̂yπ = ty, t̂xπ = tx, and B̂ = B, we get the linear approximation of

the regression estimator

d t̂yr = d t̂yπ − (d t̂xπ)′B,

so that

t̂yr � ty + t̂yπ − ty + (tx − t̂xπ)′B = t̂yπ + (tx − t̂xπ)′B.

Note that for the linearization of the regression estimator we do not need that of the

regression coefficient estimator B.

6 Maximum-likelihood estimation of the multivariate linear model

6.1 Introduction

This section is a generalization of section 15.8 of Magnus and Neudecker (1988) to

the case where each equation may have different explanatory variables.

6.2 The model

Consider the model

yi j = x′i jβi + εi j, i = 1, 2, ...,m, j = 1, 2, ..., n, (6.1)

where xi j is a ki-vector and εi j is a random variable. For a given j we can stack the

equations (6.1) as

y j = X jβ + ε j, j = 1, 2, ..., n, (6.2)

where y j = (y1 j, y2 j, ..., ym j)′, β = (β′1, β
′
2, ..., β

′
m)′, ε j = (ε1 j, ε2 j, ..., εm j)′, and

X j =


x′1 0 . . . 0

0 x′2 . . . 0
...

...
. . .

...

0 0 . . . x′m


. (6.3)

It is assumed that

ε j ∼ Nm(0,Ω), (6.4)

where Ω is a positive definite m×m-matrix, and that ε j and εs (s , t) are independent.

Thus

y j ∼ Nm(Xβ,Ω), (6.5)

and y j and ys (s , j) are independent. The log-likelihood of the model (6.2) is there-

fore

L = − 1
2 log 2π − 1

2 n log|Ω| − 1
2

n∑
j=1

ε′jΩ
−1ε j. (6.6)
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6.3 First-order conditions

Thus

dL = 1
2 n tr Ω−1(S −Ω)Ω−1(d Ω) −

n∑
j=1

ε′jΩ
−1(d ε j) =

= 1
2 n tr Ω−1(S −Ω)Ω−1(d Ω) +

n∑
j=1

ε′jΩ
−1X j(d β), (6.7)

where S = (n−1)
∑n

j=1 ε jε
′
j is the covariance matrix of the sample; note that E(S ) = Ω.

Vectorizing we get

dL = 1
2 n[vec Ω−1(S −Ω)Ω−1]′(vec d Ω) +

n∑
j=1

ε′jΩ
−1X j(d β) (6.8)

= 1
2 [vec Ω−1(S −Ω)Ω−1]′Dm(dω) +

n∑
j=1

ε′jΩ
−1X j(d β), (6.9)

where ω = v(Ω) contains only the distinct elements of Ω. Thus

∂L

∂β′
=

n∑
j=1

ε′jΩ
−1X j =

n∑
j=1

(y j − X jβ)′Ω−1X j, (6.10a)

and

∂L

∂ω′
= 1

2 n[vec Ω−1(S −Ω)Ω−1]′Dm. (6.10b)

Setting the derivatives equal to zero and rearranging, we obtain as estimator of β:

β̂ =

 n∑
j=1

X′jΩ̂
−1X j


−1  n∑

j=1

X′jΩ̂
−1y j

 . (6.11)

For Ω we get
1
2 nD′m(Ω−1 ⊗Ω−1) vec(S −Ω) = 0;

thus
1
2 nD′m(Ω−1 ⊗Ω−1)Dm v(S −Ω) = 0,

and, since D′m(Ω−1 ⊗ Ω−1)Dm is non-singular (see 2.41), we get v(S − Ω) = 0, and so

vec(S −Ω) = 0, which implies

Ω̂ =
1
n

n∑
j=1

(
y j − X jβ̂

) (
y j − X jβ̂

)′
. (6.12)

6.4 The Hessian matrix

Taking the differential of (6.7) we get the second differential of the log-likelihood:

d2L = − 1
2 n tr Ω−1(S −Ω)Ω−1(d Ω)Ω−1(d Ω)

− 1
2 n tr Ω−1(d Ω)Ω−1(S −Ω)Ω−1(d Ω)
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− 1
2 n

n∑
j=1

tr Ω−1ε j(d β)′X′jΩ
−1(d Ω)

− 1
2 n

n∑
j=1

tr Ω−1X j(d β)ε′jΩ
−1(d Ω) − 1

2 n tr Ω−1(d Ω)Ω−1(d Ω)

− (d β)′
 n∑

j=1

X′jΩ
−1X j

 (d β) −
n∑

j=1

ε′jΩ
−1(d Ω)Ω−1X j(d β)

= − 1
2 n(vec d Ω)′[Ω−1 ⊗Ω−1(2Ω − S )Ω−1](vec d Ω)

− (d β)′
 n∑

j=1

X′jΩ
−1X j

 (d β)

− 2n(vec d Ω)′(Ω−1 ⊗Ω−1)

 n∑
j=1

ε j ⊗ X j

 (d β), (6.13)

where the last equality sign rests among others on (2.4). Thus the Hessian matrix of

the log-likelihood is

HL(β, ω) =

−

 ∑n
j=1 X′jΩ

−1X j n
(∑n

j=1 ε
′
j ⊗ X′j

)
(Ω−1 ⊗Ω−1)Dm

nD′m(Ω−1 ⊗Ω−1)
(∑n

j=1 ε j ⊗ X j
)

1
2 nD′m[Ω−1 ⊗Ω−1(2Ω − S )Ω−1]Dm

 . (6.14)

6.5 The information matrix

Taking expectations and multiplying by −1 we get the information matrix

I(β, ω) =

∑n
j=1 X′jΩ

−1X j 0

0 1
2 nD′m[Ω−1 ⊗Ω−1]Dm

 , (6.15)

which can also be obtained by taking the expectation of the outer product of the first

derivatives. It follows that the asymptotic covariance matrix of Ω̂ is given by

Vas[
√

n vec(Ω̂ −Ω)] = Dm{Vas[
√

n(ω̂ − ω)]}D′m

= 2Dm[D′m(Ω−1 ⊗Ω−1)D′m]−1D′m

= 2DmD+
m(Ω ⊗Ω)D+′

m D′m = 2Nm(Ω ⊗Ω)Nm

= 2Nm(Ω ⊗Ω). (6.16)

Using (2.28) and (2.37) we get from (6.16)

covas[
√

n(ω̂i j − ωi j),
√

n(ω̂rs − ωrs)] = ωirω js + ωisω jr.

In particular

varas[
√

n(ω̂i j − ωi j)] = ωiiω j j + ω2
i j,

and

varas[
√

n(ω̂ii − ωii)] = 2ω2
ii.

Using the information matrix one easily shows that the method of scoring amounts to

iterated generalized least squares according to (6.12) and (6.13). Since any information

matrix is positive definite, this algorithm always leads to a maximum.
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7 Maximum-likelihood estimation of the factor-analysis model

7.1 Introduction

In this section we give an application to the factor-analysis model and derive the Hes-

sian matrix and the information matrix. Many books on multivariate analysis derive

the first-order conditions, see e.g. Anderson (1958, chapter 14), Bartholomew (1987,

chapter 3), Lawley and Maxwell (1963, chapter 4), and Morrison (1967, chapter 9).

Lawley and Maxwell (1963, chapter 5) and Jöreskog (1972) also derive the informa-

tion matrix, but they do not use only matrix methods.

Neudecker and Satorra (1991)............................

Subsection 2 gives the model, subsection 3 derives the first-order conditions for maximum-

likelihood estimation, subsection 4 the Hessian matrix, and subsection 5 the informa-

tion matrix.

7.2 The model

Consider the model

x ji = µi +

q∑
k=1

λikyk + ε ji, i = 1, 2, ..., p, j = 1, 2, ..., n, (7.1)

where µi and λik are coefficients and yk and ε ji are random variables. In matrix notation

we can write (7.1) as

x j = µ + Λy + ε j, j = 1, 2, ..., n, (7.2)

where x j = (x j1, x j2, ..., x jp)′, µ = (µ1, µ2, ..., µp)′, y = (y1, y2, ..., yq)′, ε j = (ε j1, ε j2, ..., ε jp)′,

and Λ = (λik). It is assumed that

y ∼ Nq(0, Iq) (7.3)

and

ε j ∼ Np(0,Ψ), (7.4)

The conditional distribution of x j given y is therefore

x j | y ∼ Np(µ + Λy,Ψ) (7.5)

and the unconditional distribution of x j is

x j ∼ Np(µ,ΛΛ′ + Ψ). (7.6)

For Λ and Ψ to be identifiable from a sample, we must impose restrictions on Λ and Ψ.

Usually one assumes that Ψ is diagonal and imposes in addition some other restrictions

on Λ and Ψ. For example, in confirmatory factor analysis one has information on Λ,

such as that some λik are zero; in exploratory factor analysis one usually assumes that
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Λ′Ψ−1Λ is diagonal. We proceed to derive the maximum-likelihood estimates of µ, Λ,

and Ψ under the assumption that Ψ is diagonal.

Suppose we have n observations on the vector x. The log-likelihood of the sample is

then

L = −1
2 np log 2π − 1

2 n log|Ω| − 1
2 n tr Ω−1S , (7.7)

where Ω = ΛΛ′ + Ψ, and S = n−1 ∑n
j=1(x j − µ)(x j − µ)′ is the covariance matrix of the

sample.

7.3 First-order conditions

The differential of the log-likelihood is

dL = − 1
2 n d(log|Ω|) − 1

2 n tr Ω−1 d S − 1
2 n tr(d Ω−1)S

= − 1
2 n tr Ω−1(d Ω)Ω−1(Ω − S ) + n tr Ω−1u(d µ)′, (7.8)

where u = n−1 ∑
j(x j − µ); note that E u = 0. Using d Ω = Λ(d Λ)′ + (d Λ)Λ′ + d Ψ, we

get

dL = − n tr Ω−1(d Λ)Λ′Ω−1(Ω − S ) − 1
2 n tr Ω−1(d Ψ)Ω−1(Ω − S )

+ n tr Ω−1u(d µ)′

= − n[vec Ω−1(Ω − S )Ω−1Λ]′(d λ) − 1
2 n[vec Ω−1(Ω − S )Ω−1]G′pψ (7.9)

+ n(vec Ω−1u)′(d µ),

where λ = vec Λ, and ψ = w(Ψ) = G′p vec Ψ is the vector with the diagonal elements

of Ψ. Thus, the first derivatives of L are

∂L

∂µ′
= n vec u′Ω−1 = nu′Ω−1, (7.10a)

∂L

∂λ′
= −n[vec Ω−1(Ω − S )Ω−1Λ]′, (7.10b)

∂L

∂ψ′
= − 1

2 n[vec Ω−1(Ω − S )Ω−1]′G′p. (7.10c)

Setting the first derivatives equal to zero we get from (7.10a) u = 0 and so

µ̂ =
1
n

n∑
j=1

x j = x̄, (7.11)

Ŝ =
1
n

n∑
j=1

(x j − x̄)(x j − x̄)′; (7.12)

from (7.10b) we get

(Ω̂ − Ŝ )Ω̂−1Λ̂ = 0; (7.13)

from (7.10c) we get

dg[(Ω̂ − Ŝ )Ω̂−1] = 0. (7.14)
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7.4 The Hessian matrix

From (7.8) we obtain as the second differential of the log-likelihood equation:

d2L = − 1
2 n tr Ω−1(d Ω)Ω−1(d Ω − d S ) + n tr Ω−1(d Ω)Ω−1(d Ω)Ω−1(Ω − S )

+ n tr Ω−1(d u)(d µ)′ − n tr Ω−1(d Ω)Ω−1u(d µ)′

= − 1
2 n tr Ω−1ΦΩ−1(d Ω)Ω−1(d Ω)

− n(d µ)′Ω−1(d µ) − 2n tr Ω−1(d Ω)Ω−1u(d µ)′, (7.15)

where Φ = 2S −Ω. Using d Ω = Λ(d Λ)′ + (d Λ)Λ′ + d Ψ, we get

d2L = − 1
2 n tr Ω−1ΦΩ−1Λ(d Λ)′Ω−1Λ(d Λ)′

− 1
2 n tr Ω−1ΦΩ−1Λ(d Λ)′Ω−1(d Λ)Λ′

− 1
2 n tr Ω−1ΦΩ−1(d Λ)Λ′Ω−1(d Λ)Λ′ − 1

2 n tr Ω−1ΦΩ−1(d Λ)Λ′Ω−1Λ(d Λ)′

− n tr Ω−1ΦΩ−1Λ(d Λ)′Ω−1(d Ψ) − n tr Ω−1ΦΩ−1(d Λ)Λ′Ω−1(d Ψ)

− 1
2 n tr Ω−1ΦΩ−1(d Ψ)Ω−1(d Ψ) − n(d µ)′Ω−1(d µ)

− 2n tr Ω−1Λ(d Λ)′Ω−1u(d µ)′ − 2n tr Ω−1(d Λ)Λ′Ω−1u(d µ)′

− 2n tr Ω−1(d Ψ)Ω−1u(d µ)′

= − 1
2 n(vec d Λ′)′(Ω−1ΦΩ−1Λ ⊗ Λ′Ω−1)(vec d Λ)

− 1
2 n(vec d Λ)′(Λ′Ω−1ΦΩ−1Λ ⊗Ω−1)(vec d Λ)

− 1
2 n(vec d Λ′)′(Ω−1Λ ⊗ Λ′Ω−1ΦΩ−1)(vec d Λ)

− 1
2 n(vec d Λ)′(Λ′Ω−1Λ ⊗Ω−1ΦΩ−1)(vec d Λ)

− n(vec d Ψ)′(Ω−1ΦΩ−1Λ ⊗Ω−1)(vec d Λ)

− n(vec d Ψ)′(Ω−1Λ ⊗Ω−1ΦΩ−1)(vec d Λ)

− 1
2 n(vec d Ψ)′(Ω−1 ⊗Ω−1ΦΩ−1)(vec d Ψ)

− n(d µ)′Ω−1(d µ) − 2n(vec d µ)(u′Ω−1 ⊗Ω−1Λ)(vec d Λ′)

− 2n(vec d µ)′(u′Ω−1Λ ⊗Ω−1)(vec d Λ)

− 2n(vec d µ)′(u′Ω−1 ⊗Ω−1)(vec d Ψ). (7.16)

After some algebra it appears that the Hessian matrix of the log-likelihood has the

form

HL(µ, λ, ψ) =


Hµµ Hµλ Hµψ

Hλµ Hλλ Hλψ

Hψµ Hψλ Hψψ

 , (7.17)

with

Hµµ = − nΩ−1, (7.18)

Hµλ = H′λµ = −n(u′Ω−1 ⊗Ω−1)Kpq − n(u′Ω−1Λ ⊗Ω−1)

= − n(u′Ω−1 ⊗Ω−1)[(Ip ⊗ Λ)Kpq + (Λ ⊗ Ip)]

= − n(u′Ω−1 ⊗Ω−1)(Kpp + Ip2)(Λ ⊗ Ip)

= − 2n(u′Ω−1 ⊗Ω−1)Np(Λ ⊗ Ip) (7.19)
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Hµψ = H′ψµ = −n(u′Ω−1 ⊗Ω−1)G′p, (7.20)

Hλλ = − 1
2 nKqp(Ω−1ΦΩ−1Λ ⊗ Λ′Ω−1) − 1

2 n(Λ′Ω−1ΦΩ−1Λ ⊗Ω−1)

− 1
2 n(Λ′Ω−1Λ ⊗Ω−1ΦΩ−1) − 1

2 nKqp(Ω−1Λ ⊗ Λ′Ω−1ΦΩ−1)

= − n(Λ′Ω−1 ⊗Ω−1)Np[(Ω ⊗ Φ) + (Φ ⊗Ω)](Ω−1Λ ⊗Ω−1)

= − 2n(Λ′ ⊗ Ip)Np(Ω−1 ⊗Ω−1ΦΩ−1)Np(Λ ⊗Ω−1), (7.21)

Hλψ = H′ψλ = −1
2 n(Λ′Ω−1 ⊗Ω−1ΦΩ−1)G′p

− 1
2 n(Λ′Ω−1ΦΩ−1 ⊗Ω−1)G′p

= − n(Λ′ ⊗ Ip)Np(Ω−1 ⊗Ω−1ΦΩ−1)G′p, (7.22)

Hψψ = − 1
2 nGp(Ω−1 ⊗Ω−1ΦΩ−1)G′p = − 1

2 n(Ω−1 �Ω−1ΦΩ−1). (7.23)

Note that if u = 0 (which holds at the maximum-likelihood estimate, see (7.10a)), then

Hµλ = 0 and Hµψ = 0. It follows from (7.17)-(7.23) that the Hessian matrix is

HL(µ, λ, ψ) = −n×
Ω−1 2(u′Ω−1⊗Ω−1)Np(Λ⊗Ip) (u′Ω−1⊗Ω−1)G′p

2(Λ′⊗Ip)Np(Ω−1u⊗Ω−1) 2(Λ′⊗Ip)Np(Ω−1⊗Ω−1ΦΩ−1)Np(Λ⊗Ip) (Λ′⊗Ip)Np(Ω−1⊗Ω−1ΦΩ−1)G′p

Gp(Ω−1u⊗Ω−1) Gp(Ω−1⊗Ω−1ΦΩ−1)Np(Λ⊗Ip) 1
2 (Ω−1�Ω−1ΦΩ−1)

 (7.24)

Expressions for the individual elements of H, such as ∂2L/(∂λir∂λ js), can be obtained

from (7.18)-(7.23) with the help of equations (2.29), (2.38), and (2.59)

7.5 The information matrix

Taking expectations of the Hessian matrix (7.24) and multiplying by −1, we get as

information matrix

I(µ, λ, ψ) = n×
Ω−1 0 0

0 2(Λ′ ⊗ Ip)Np(Ω−1 ⊗Ω−1)Np(Λ ⊗ Ip) (Λ′ ⊗ Ip)Np(Ω−1 ⊗Ω−1)G′p
0 Gp(Ω−1 ⊗Ω−1)Np(Λ ⊗ Ip) 1

2 (Ω−1 �Ω−1)

 (7.25)

From (7.25) we get

Iλλ = n(Λ′Ω−1Λ) ⊗Ω−1 + nKqp(Ω−1Λ ⊗ Λ′Ω−1); (7.26)

and therefore, using (2.27) and (2.36),

I(λi j, λrs) = n(ωirγ js + θisθr j), (7.27)

where Γ = Λ′Ω−1Λ and Θ = Ω−1Λ. Similarly, we get

I(ψk, λi j) = nωikθk j, (7.28)

and

I(ψk, ψ`) = 1
2 n(ωk`)2. (7.29)
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Equations (7.27)-(7.29) coincide with the formulae derived without matrix differentia-

tion techniques by Jöreskog (1972). If there are no other restrictions on the parameters

and if the model is identified, then we can derive the asymptotic variances of (µ, λ, ψ)

by inverting the information matrix.
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