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ABSTRACT

We show how the use of matrix calculus can simplify the derivation of the linearization of the regression coefficient
estimator and the regression estimator.
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1. INTRODUCTION

Design-based sampling variances of non-linear statistics are of-
ten calculated by means of a linear approximation obtained by
a Taylor expansion; examples are the variances of the general
regression coefficient estimator and the regression estimator.
The linearizations usually need some complicated differentia-
tions. The purpose of this paper is to show how matrix calcu-
lus can simplify these derivations, to the extent that even the
Taylor expansion of the regression coefficient estimator can
be derived in one line, which should be compared with the
nearly one page that Särndal et al (1992, pp. 205-6) need.
To be honest, the use of matrix calculus requires some more
machinery to be set up, which is not needed for traditional
methods. However this set-up can be regarded as an invest-
ment: once it has been learned, it can be used fruitfully in
many other applications. After this paper had been written,
Binder (1996) appeared, in which similar techniques are used
to derive variances by means of linearization. The present
paper can be seen as a pedagogical note, in which the use of
differentials is exposed.

2. MATRIX DIFFERENTIALS

2.1. Introduction

We will use the matrix calculus by means of differentials, as
set out by Magnus and Neudecker (1988); this calculus differs
somewhat from the usual methods, which focus on deriva-
tives instead of differentials. Therefore in this section we will
briefly describe the definitions and properties of differentials
(see Zeelenberg, 1993, for a more extensive survey). We first
define differentials for vector functions, and then generalize to
matrix functions.

2.2. Vector Functions

Let f be a function from an open set S ⊂ Rm to Rn; let x0

be a point in S. The function f is differentiable at x0 if there

exists a real n×m-matrix A, depending on x0, such that for
any u ∈ Rm for which x0 + u ∈ S, there holds

f(x0 + u) = f(x0) +Ax0u+ o(u), (1)

where o(u) is a function such that lim|u|→0 |o(u)|/|u| = 0; the
matrix A is called the first derivative of f at x0; it is denoted
as Df(x0) or ∂f/∂(x′)cx=x0 . The derivative Df is equal to
the matrix of partial derivatives, i.e. Df(x)ij = ∂fi/∂xj . The
linear function d fx0 : Rm 7→ Rn defined by d fx0 : u 7→ Ax0u
is called the differential of f at x0. Usually we write dx in-
stead of u so that d fx0(dx) = Ax0 dx. From (1) we see that
the differential corresponds to the linear part of the function,
which can also be written as

y − y0 = Ax0(x− x0),

where y0 = f(x0). Therefore the differential of a function is
the linearization of the function: it is the equation of the hy-
perplane through the origin that is parallel to the hyperplane
tangent to the graph of f at x0; so the linearized function can
be written as

f(x)
.
= f(x0) +Ax0(x− x0). (2)

Alternatively, if B is a matrix such that d fx0(dx) = B dx,
then B is the derivative of f at x0 and contains the partial
derivatives of f at x0. This one-to-one relationship between
differentials and derivatives is very useful, since differentials
are easy to manipulate.

Finally, we usually omit the subscript 0 in x0, so that we
write d f = Ax dx.

2.3. Matrix Functions

A matrix function F from an open set S ⊂ Rm×n to Rp×q is
differentiable if vecF is differentiable. The derivative DF is
the derivative of vecF with respect to vecX, and is also de-
noted by ∂ vecF/∂(vecX)′. The differential dF is the matrix
function defined by vec dFX0(U) = AX0 vecU .
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2.4. Properties of Differentials

Let A be a matrix of constants, F and G differentiable matrix
functions, and α a real scalar. Then the following properties
are easily proved:

dA = 0, (3)

d(αF ) = α dF, (4)

d(F +G) = dF + dG, (5)

d(FG) = (dF )G+ F (dG), (6)

dF−1 = −F−1(dF )F−1. (7)

The last property can be proved by taking the differential of
FF−1 = I and rearranging.

3. LINEARIZATION OF THE
REGRESSION COEFFICIENT

ESTIMATOR

The π-estimator (Horvitz-Thompson estimator) of the finite
population regression coefficient (cf. Särndal et al, 1992, sec-
tion 5.10) is

B̂ = T̂−1t̂, (8)

where

T̂ =
∑

k∈s

xkx
′
k

πk
,

t̂ =
∑

k∈s

xkyk
πk

,

yk is the variable of interest for individual k, xk is the vector
with the auxiliary variables for individual k, πk is the inclu-
sion probability for individual k, and s denotes the sample.
Taking the total differential of (8), using properties (6) and
(7), and evaluating at the point where T̂ = T , t̂ = t, we get

d B̂ = −T−1(d T̂ )T−1t+ T−1(d t̂). (9)

Because of the connection between differentials and linear ap-
proximation, as given in equation (2), it immediately follows
that (9) corresponds to the linearization of the regression co-
efficient estimator:

B̂
.
= B−T−1(T̂−T )T−1t+T−1(t̂−t) = B+T−1(t̂−T̂B),

where B = T−1t.

4. LINEARIZATION OF THE
REGRESSION ESTIMATOR

The regression estimator of a population total is (cf. Särndal
et al, 1992, section 6.6)

t̂yr = t̂yπ + (tx − t̂xπ)′B̂, (10)

where t̂yπ is the π-estimator of the variable of interest, tx is
the vector with the population totals of the auxiliary vari-
ables, t̂xπ is the vector with the π-estimators of the auxiliary
variables, and B̂ is the estimator of the regression coefficient
of the auxiliary variables on the variable of interest. Taking
the total differential of (10), using properties (3) and (6), and
evaluating at the point where t̂yπ = ty, t̂xπ = tx, and B̂ = B,
we get the linear approximation of the regression estimator

d t̂yr = d t̂yπ − (d t̂xπ)′B,

so that

t̂yr
.
= ty + t̂yπ − ty + (tx − t̂xπ)′B

= t̂yπ + (tx − t̂xπ)′B.

Note that for the linearization of the regression estimator we
do not need that of the regression coefficient estimator B.
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