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Abstract

The motivation of this paper 1s to study how heaping affects estimates in survival analysis.
Cox regression is often used in survival analysis. If the data are heaped, e.g. because of
recall errors, Cox’s partial likelihood approach is no longer appropriate. This paper shows
how this problem can be overcome. We consider the problem as a missing data problem. A
model is constructed that takes heaping into account. We apply ‘full’ maximum likelihood
based on the actual data, with many nuisance parameters, simultaneously for all parame-
ters. Ingredients of our method are application of the EM algorithm, Cox regression and
nonparametric maximum likelihood calculation with ‘predicted’ data in each M step. An
example from practice, where jackknife i1s used to estimate the variances, illustrates the
power of the new methodology.
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1 Introduction

Heaping occurs in many kinds of retrospectively obtained duration data. Different proposals
have been put forward on how to cope with this phenomenon. For example, heaping may occur
in unemployment data obtained by periodic labour force surveys (LI'S), see [12] for a discussion
on the [talian LFS. Anthropometric data on children’s age from Tanzania suffer from another
kind of heaping, see [7]. Heaping is important in statistical analysis, for rounding may affect
results if data are assumed correct.

The following example serves to illustrate how heaping may arise in practice. The relation
between unemployment duration and covariates is studied in [5] using standard Cox regression
on data from the Netherlands Socio-economic panel (SEP) survey. Unemployment spells are
derived from this SEP and linked to the covariates of the participating respondents. However,
a peculiarity appears in the frequency table of these unemployment spells. A suspicious ‘peak-
ing” appears at multiples of six months. For a typical plot, see Figure 1.
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Figure 1. Typical plot of heaped data frequency table.

We suspect there has been some rounding of these data. The reported data seem ‘heaped’
on some months.

The SEP has been conducted from April 1984 onwards by Statistics Netherlands (CBS),
resulting in a longitudinal cross-section of a representative sample of the Dutch population,
among 5000 households, see [1]. The respondents were followed in time, and every six months,
in April and October, they were asked, among other questions, whether they had found a job
or not, and if so when. Keeping — for practical reasons — only those unemployment spells
that started between April 1984 and October 1987 leads to a data set of 784 unemployment
spell records. The first month is April 1984 and the last month is October 1987. Each spell
is linked with a data record of 43 fields: a reported begin point, a reported end point (in
months), a censoring indicator (indicating whether the spell has been observed to end) and a
list of covariates. In the SEP case (the problem at hand), reported durations are derived from
end and begin month data. This suggests that heaping is here caused by rounding of begin or
end points of unemployment spells.

A frequency table of begin points indeed reveals a spiking on multiples of six months in
the problem at hand; uncensored and right censored end point frequency tables show similar
features. The end point frequency table shows a huge spike at the last month, but this is mainly
due to the right censored ongoing spells. This suggests that modelling begin and end heaping
is a more natural approach than modelling the heaping of durations directly, The idea is that
some reported dates are true; others are rounded to the next or previous April or October.
Such months (to which dates may be rounded) are called ‘heaping months’. This concept of
‘heaping months’ is the basis of our heaping model. The methodology in the next section is
therefore based on this approach. Note that even seemingly accurate durations, e.g. of eleven
months, may occur from this rounding.



2 Heaping Model

In this section we introduce our heaping model in an informal way. For any duration there is
a true begin point, a true end point, and also a reported begin point, and a reported end point.
A reported date coincides with a true date with some probability. However, it is also
possible that the reported date is rounded forward or backward (with some restriction), i.e. a
date is reported on a heaping month. The restriction we use in this paper is that any reported
date may only be rounded to the nearest heaping month before the true date, or to the nearest
heaping month after the true date. If such a date is rounded, then it is said to be ‘heaped’.

If a true date is on a heaping month then its corresponding reported date is equal to this
true date, i.e. it is not rounded.

The heaping months are assumed fixed and known. It depends on the survey structure
whether the heaping months for begin points and for end points coincide. For the problem at
hand, the set of heaping months for the begin months consists of Aprils and Octobers, from
October 1984 up to and including October 1986. Similarly, the set of heaping months for the
uncensored end points consists of Marches and Septembers, from September 1985 up to and
including March 1987.

A duration may also be right censored, i.e. its corresponding end point is only observed to
exceed some point. It depends on the survey structure how censoring should be modeled.

3 Strategy

This section outlines the techniques needed for the construction of our heaping model. Heaping
is a complex phenomenon in general. Formal definitions of heaped data are not needed here,
but for a definition, see [6]. Heaping is interpreted in this paper as a kind of data coarsening,
i.e. as a grouping of different kinds of data, so we consider this statistical problem as a coarse
data problem.

Censoring is also a complex phenomenon in general, see for example [9]. Since the emphasis
of this paper is on illustrating how to model heaping, we assume a simple censoring mechanism,
see section 4. Observe the following.

e If all variables in the model had been observed (i.e. true as well as reported durations),
then (standard) maximum likelihood techniques would yield a maximum likelihood esti-
mate (MLE) along with variances, i.e. statistical inference on the parameter of interest
as well as on the heaping effect. However, this so-called ‘full data’ likelihood contains
unknown, unobserved variables and therefore it cannot be calculated.

The Expectation-Maximization (EM) algorithm provides a useful alternative for the com-
putationally heavier method of integrating out all the unknowns. By EM the MLE is
found without having ever to write down the ‘actual’ data full likelihood, under some

regularity assumptions, see [4] for more on this topic. Therefore we propose to use EM
to find this MLE.

o However, EM does not directly yield the variances of this MLE, because missingness of
the data increases variances, see [11] and [10] for more on this topic.

Jackknifing is a way to estimate the variances, see for example [13], and saves time with
respect to bootstrapping, while standard large sample properties hold, t-values can be
calculated etc. Therefore we propose to use jackknife for estimating the variances of the
parameters.
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4.1

Standard survival analysis assumes no heaping and instead of the full data likelihood
often the more simple Cox Partial Likelihood (PL) is used for inference on the parameter
of interest. However, the problem with heaping is that it destroys the very special PL
structure. The conditions that allow the use of PL techniques are not satisfied, see [3]
for more on this topic.

Now a significant contribution of Johansen [8] is that the ideas of PL are not at all
necessary for estimating the parameter of interest.

Johansen shows in his paper that the Cox maximum PL estimator of the regression
parameters is actually the profile MLE where # and A are considered as joint parameters.
Profile likelihood is ‘full’ MLE with nuisance parameters, for a definition, see [2].

A nice feature of this profile likelihood method is that in the case of Cox regression the
estimator of § that maximizes this profile likelihood has the same value as the estimator
that maximizes the PL, see [8].

Also, using nonparametric baseline hazard notation the Breslow estimator of A is identi-
cally equal to the maximum likelihood estimator; in fact the Cox partial likelihood for
is identically equal to the profile likelihood for §, max, lik(3, A), see also subsection 4.5.

In fact, 8 and A should be estimated simultaneously, but the point is that in [8] it is
argued that A can be estimated after estimation of 3, and that the resulting pair (3, \)
are the joint MLE’s of (3, A).

Although using profile likelihood may at first glance look more complicated than using
PL, in fact, we show that its implementation is not so difficult, see section 4.5. Therefore
we propose to use profile likelihood for inference on the parameter of interest.

Implementation

Assumptions

The following assumptions on Cox regression are in order to compare the results of our heaping
model with those of a standard Cox regression model without heaping, i.e. where the reported
durations are considered true, see [5]. Discussing the strength of these assumptions for the
problem at hand is beyond the scope of this paper.

All reported variables and covariates are observed correctly.

Covariates are constant in time; for the problem at hand this implies that unemployment
benefit and change of region do not affect people’s attitudes and efforts.

The true durations are independently distributed; for the problem at hand, this assump-
tion seems reasonable. For each respondent only the first three unemployment spells
during the survey period were included in the data set (most respondents lost their job
at most once during the survey period).

Cox’s Proportional Hazards Model (PHM) describes the relation between true duration
and covariates, see for example [9] for more on this topic.

The baseline hazard is piecewise constant in each month; since the data we observe are
all given in units of months this is not so much of a restriction on our model.

Assumptions for our heaping model need some discussion now.



o The sets of heaping months are known in advance and independent of the data; for the
problem at hand this seems quite reasonable, considering the survey structure, since the
dates of the survey are exogeneously determined.

e Heaping only depends on the true point, whether it is on the according set of heap-
ing months or not; this seems reasonable, if precisely reported variables are considered
reliable.

e In case a true point is on the corresponding set of heaping months, it depends on the
structure of the survey what decision rule to use. In case a true point is not on the
according set of heaping months, its heaping is described by fixed, unknown probabilities.

e Censored end points are not heaped; for the problem at hand this assumption seems
reasonable from the survey structure.

e Censoring does not depend on the parameter of interest, so it plays no role in the full
data likelihood; for the problem at hand, however, various causes of censoring are present,
e.g. end of survey, panel attrition or selectivity of nonresponse, so this assumption seems
quite strong.

e Begin point distribution is uniform; for the problem at hand this implies that the effects
of season are neglected and therefore this assumption seems quite strong.

4.2 Notations

Let V denote the set of calendar months of the total survey period. Let H} denote (for the
begin points) the set of heaping months. For any seV we denote the last heaping month
before s by t*~(s) = max{heH, : h < s}, we denote the first heaping month after s by
"+ (s) = min{heH, : h > s} and we denote also t*=(s) = {s}. Denote by H, (for the uncensored
end points) the set of heaping months. For any ueV, t°7(u),t°*(u) and t°=(u) are defined

similarly.
Denote the complete data specification of n items by z = (21,...,2,), where for each ¢,
i=1,...,n,z; = (8, Sir, Ui, Ui r, ¢, 0;) With s; = true begin point; s; ., = reported begin point;

u; = true end point (if observed); u;, = reported end point; ¢; = last observed end point (if 1
is right censored); é; = censoring indicator (with value 1 if i’s end point is observed).

For any true duration 7; we have 7; = u;—s;+1 if the end point is observed, and 7; > ¢;—s;+1
if the observation is right censored. Denote the covariate vector of item 7 by 2;. Let ¢ denote
the vector of parameters.

Begin heaping is described by its distribution given the true begin points:

(-] s) = P(Siyr = |8 =s;,2; ¢).

Similarly, uncensored end point heaping is described by

Te(- | ug) = P(Uip = - | si,7i = - = si + 1,2, 6, = 15 ).

Denote the censoring mechanism by

7rc(-> = P(Ui)T 2 . | Zl',(sl‘ = 0)
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Denote the distribution of right censored and uncensored true durations by
77(:)=P(r > | 2,6 =0; ¢)

and
Ti() = P(r = | 2,6 = 1; ¢),
respectively.

Finally, denote begin point distribution by

71'5(') = P(SI‘ = - | Zl‘).

4.3 Stochastic Specification

e Two cases may occur, depending on the true begin point: Heaping of begin points is
specified as follows (cf. section 2).
1. sefy: s is correctly reported: S5, = s.

2. s¢y: s between two begin heaping months may be rounded backward, forward or
not at all: S;, = b=, Sip = tht or Sir = th=

mo(- | 5) = =) o QL= 10 0=) ()

where py, gy, 7 denote the probabilities for begin heaping backward, forward or not at
all, respectively, with the constraint py, + g, + 75 = 1.

Heaping of uncensored end points is specified similarly, with corresponding parameters
De, e, Te, Where pe + qo + 7. = 1.

The uniform distribution of begin points implies m,(-) = | V |7*.

Independent censoring reduces 7.(+) to a constant in the full data likelihood.

e Cox’s PHM describes the relation between true durations and covariates. Using nonpara-
metric baseline hazard notation, Ao(:) = >_,50Aotl{t = -}, this relation can be written
out explicitly as

77 () = exp(—exp(B%) D Aor);
1>
an expression for 74(-) can be derived similarly.

4.4 Likelihood

In order to apply EM later on, we need to write down the full data likelihood using all the
random variables in the model, whether these are observed or not. Independence of the du-
rations allows the ‘full data’ likelihood to be written as a product of individual likelihoods.
If we accept the previously stated assumptions, then the contribution to the likelihood of an
uncensored observation is

P(iy Siirs Tir iy Ui | 25 @) = Ts(80) X Tp(Siy | 8i) X wa(73) X we(usr | ug)
and that of a right censored observation is

P(8iySirmyTis Ciy | 203 @) = Ts(8i) X mp(8i | 8i) X 7rdz(n) X me(¢;).



The full data log likelihood reduces to

T

zlog To(sip | i)+ Z(l — 6:)log 7 () +
1=1

1=1

Z oilog me(wir | i) + Z b; log ma(7y), (2)
=1 1=1
up to a constant, since 7, and 7. do not depend on ¢.

4.5 Estimation

The principle of EM is elementary. However, application of EM on (2) is elaborate and involves
a lot of careful bookkeeping but is essentially routine. Some nice features in this practical
implementation are worth mentioning.

e Consider the following interpretation, under the assumption of independent durations.
Denote by J the space of all admissible realizations of a duration. Denote the contribution
to the likelihood of realization j by f;(-). Denote the event ‘observation ¢ has realization
7’ by A;(7). Now

SN LA () f(9) (3)

jeJ 1

denotes the full data log likelihood. Taking conditional expectations on (3), given the in-
complete data F and given a parameter value ¢(°) is equivalent to replacing the indicators
in (3) by appropriate conditional probabilities. The resulting expression,

DO P | B8O fi(9),

can be maximized over ¢ for each M step. Some realizations may be taken together,
thanks to the assumptions for the problem at hand. The effects of begin heaping, end
heaping, censored and uncensored durations are isolated, see (2). Thanks to heaping
specification (1), the heaping effect splits up into six simpler sums.

e Rewriting the full data log likelihood (2) in terms of nonparametric hazards, omitting
those terms that do not vary with A\g and maximizing with respect to Ag; for given
leads to the so-called ‘Breslow estimator’

A A,

Ao = == (4)

E(8)

as an estimator of the baseline hazard, with A, = 31| 6;a;, and Ey = Y1 b; rexp(f8%)
where a;; = 1{t = 7;} and b;; = 1{t < 7}.
However, (4) can not be calculated, because # is unknown. As an estimator of 3 we use
the well-known Cox PL estimator. Thanks to Johansen’s result this yields the MLE.
For the EM algorithm we apply the analogue. Omitting from (2) those terms that do
not vary with Ao leads to (4), where a;, = P(r; =t | Fy; ¢) and by, = P(r: > t | Iy; ¢),
where F; represents the incomplete data on 1.

Following the same procedure we obtain in each E step estimators of # and A, which can
be maximized in the following M step.
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o In each E step, the begin heaping parameters have to be estimated simultaneously, be-
cause of their interdependence. Iind heaping is similarly estimated, and by the censoring
assumptions it is correct to ignore right censored end points for the estimation of the end
heaping parameters. Thanks to (1) we may use in each M step the classic trinomial MLE
for estimating the proportion of the begin point data that are heaped backward, forward
and not at all.

e From (2) it is easy to see that the full data log likelihood of our heaping model has
the so-called regular exponential form, see [4] for more on this topic. So we expect no
problems on the choice of initial values for the parameter vector nor any problems in
finding a global maximum using standard methods.

5 Results

The results of implementing our heaping model on the data can be read from table 1. The
nine most important covariates from Gorter and Hoogteijling’s report have been used for our
heaping model. For the meaning of the variable names, see [5]. The first and third columns give
the estimates of the Cox and heaping model, respectively. The variances of the standard model
are obtained by standard methods and can be read from the second column. The fourth column
is the result of a k-sample jackknife (where k = 28). The standard errors from the heaping
model are better approximations than those from the standard model. We have used jackknife
since using the standard errors from the last EM step is incorrect. Comparing the results of
both our heaping model and the model without heaping leads to the following conclusions.

e Heaping exists. All heaping parameters are significantly non-zero.

e I'or both models, the factors having the most important influence on unemployment
duration are the same, although the coefficients slightly differ.

e Respondents tend more to round backward than forward; this holds for begin points as
well as for end points.

The nonparametric optimal baseline hazard for our heaping model is somewhat jumpy,
however. The small amount of data might have caused these jumps.

Finally, a remark on computing time of the jackknife. On a 386 SX-20, computing took
approximately 13 days, on a 486 DX-33, it took 4 days and on a parallel computer with 16
processors it took 13 minutes [14]. Clearly, parallel computing can be of great value for jackknife
computations.

6 Remarks

We conclude with the following remarks.

e Right censored durations usually give less information than fully observed durations.
If censoring is independent of heaping, then right censored durations may give more
information about the end point than fully observed durations whose end points are on
a ’suspicious’ month.

e The data for the problem at hand are in discrete time, while our heaping model uses
continuous time survival theory, see section 4.1. In continuous time survival theory the
hazard rate follows directly from the integrated hazard, by differentiating the latter.
However, for the discrete version this is not quite the same, see [9] for more on this topic.



Table 1: Comparison of estimates
SEP unemployment data
756 observations, 9 covariates

Cox regression heaping model
variable coefficient st.error coefficient st.error
age -0.017 0.005 -0.023 0.030
northeast -0.391 0.093 -0.329 0.146
midvoc 0.146 0.091 0.171 0.229
foreign -0.272 0.184 -0.274 0.840
bigtown -0.318 0.110 -0.338 0.214
before -0.566 0.096 -0.539 0.215
sex 0.014 0.097 0.065 0.292
earner 0.024 0.113 -0.032 0.368
married 0.016 0.125 0.156 0.389
Db 0.209 0.018
qp 0.095 0.012
b 0.696 0.025
Pe 0.166 0.018
e 0.132 0.017
Te 0.702 0.025

This discrepancy in the stochastic specification, see section 4.3, facilitates computation
and is not expected to affect seriously the validity of our analysis.

e The heaping model described in this paper is based on a separate modelling of begin and
end point heaping. We believe it is indeed better (more realistic) to model begin heaping
and end heaping separately, instead of modelling the heaping of durations, even when no
information is available about the begin points and end points.

o We emphasize that the assumptions in this paper are only intended to keep the im-
plementation of the model transparent; extensions of the model and relaxation of the
assumptions are straightforward, but left for future research.

It is our opinion that we have established a reasonable balance between the degree of
complexity of the model and the degree of realism of the assumptions, at least for the problem
at hand. We hope to have illustrated a reasonable heaping model and the use of profile
likelihood.
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