
1. Introduction 

This article presents evidence on the links between R&D and productivity for

manufacturing firms in the Netherlands. The study provides estimates of the output

elasticity of the R&D stock and of the private rate of return to R&D. The article applies

the methodology used by Hall and Mairesse (1995) to a panel dataset of R&D

performing firms in the Netherlands, with some minor modifications. First, a correction

for sample selection bias is used in an attempt to adjust the results for possible bias

arising when the basic methodology is applied to the R&D survey for the Netherlands.

Next, more complete adjustment is made to the resource input data to correct for the

’double counting’ of R&D inputs. Lastly, an attempt is made to correct for

heteroskedasticity in the error term of the basic model. The study makes use of linked

files of the R&D surveys and the annual production statistics collected by Statistics

Netherlands for the years 1985, 1989, and 1993. 

Most previous work on the link between R&D and productivity in the Netherlands has

been based on aggregate or industry data. Den Butter and Wollmer (1992) report a

significantly negative estimate for private returns to R&D, whereas the cross-country

study of Coe and Helpman (1993) shows a positive contribution of private R&D to total

factor productivity growth for the Netherlands. These inconclusive results are a likely

reason that Verspagen (1995) omits the Netherlands from his broad-based survey article

on R&D and productivity growth. The ambiguous estimates probably derive from the

very skewed distribution of firm size and R&D expenditure in the Netherlands. R&D

expenditure in Dutch manufacturing is highly concentrated in five multinational

companies. These companies spend a disproportionate – albeit decreasing – part of their

worldwide R&D in the Netherlands, whereas their production is to a large extent located

outside the Netherlands. The recent dramatic decrease of domestic R&D expenditure of

these companies can be held responsible for the decline in aggregate manufacturing

R&D from 1989 onwards. 
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The use of micro-data enables us to estimate the effect of R&D on productivity growth

free from aggregation bias. However, the use of firm-level data does not solve all

econometric problems. Measurement errors, simultaneity and selectivity can continue to

cloud results (see e.g. Grilliches and Mairesse, 1995). The data allow robustness checks

of the results with respect to measurement of capital stocks, double counting of R&D

inputs, creation of initial R&D knowledge stocks, and different measures of output. We

correct for simultaneity bias by estimating a production function in ’long-difference’

form and by using a partial TFP approach. Selectivity may be a problem in our sample:

indeed the probability of exiting the sample is negatively related to the level of R&D

intensity. The problem appears to be more severe in the period 1989–1993, when R&D

expenditure was declining, on average. In our estimation procedure an attempt is made

to correct for the selectivity problem by using a Tobit model. 

Our findings are very similar to the results recently published by Hall and Mairesse

(1995). It is found that the elasticity for the stock of R&D capital is about 0.06 for gross

output and 0.08 for value added and the private gross rate of return to R&D varies

between 12 percent for gross output and about 30 percent for value added. Because the

Hall and Mairesse estimates were derived from a panel with considerably more

observations in the time dimension, this is a surprising result. 

2. The data 

The dataset used in this study contains linked firm-level information from the annual

production surveys and the extended R&D surveys of 1985, 1989 and 1993, conducted

by Statistics Netherlands
 1)

. The production surveys provide data for each firm on sales,

gross output, value added, payroll, number of employees, materials, electricity use and

capital consumption allowances (depreciation costs). The R&D surveys give information

on R&D full-time equivalents and other staff, and expenditure on in-house R&D and

outsourced R&D. The R&D expenditure is further disaggregated into staff costs,

material costs and R&D plant and equipment investments. Other disaggregations split

expenditure by type of research (basic and applied) and by process and product research.

A distinct advantage of this dataset is that the R&D expenditures can be separated from

the other operating expenses of the firm, avoiding the biases in estimation caused by

’double counting’ resource inputs (see Schankerman, 1981). In the production function

estimations, material and labour input variables can be adjusted for the amounts used in

R&D endeavour. This adjustment is not attempted for the capital input because the R&D

investments account for only 10 percent of total R&D expenditure and we have only two

observations of R&D expenditure for each panel (1985–1989 and 1989–1993). So the

best we can do is to solve the double counting problem for 90 percent. 
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The nominal variables in the dataset are all deflated into constant 1985 guilders. Output

and materials are deflated by applying 3-digit SIC
 2)

 product and material prices to all

firms within the corresponding industry. R&D expenditure is deflated by a Divisia index

of changes in wages of R&D staff and material prices. The price changes for R&D staff

were computed for industry groups as the change in average hourly compensation for

R&D employees between 1985 and 1989 and between 1989 and 1993
 3)

. Using

firm-specific labour and material expenditure shares, the appropriate wage change was

averaged with the material price change to construct R&D expenditure deflators. 

The capital input measure required to estimate the production functions is proxied by the

consumption allowances, available in the production statistics. This financial measure is

related to the capital stock but does not directly reflect the capital service flow. Tax

laws, vintage and type distribution of the assets, and cyclical capital utilisation all cause

differences between the depreciation data and the desired measure of capital real capital

input. When the production function is estimated in first difference form, changes in the

capital inputs are proxied by changes in electricity use. This measure should correct for

fluctuations in capital utilisation, but may misrepresent the growth of capital inputs if

firms adopt energy saving technologies. Given the fall of electricity prices in the period

of observation, it is unlikely that large scale substitution between energy and capital has

taken place. 

Tables 1A, 1B and 2 give some summary statistics for the linked datasets. In table 1A

descriptive statistics for three cross-sections of linked data are presented. In total 382,

436 and 347 R&D firms could be linked to the production statistics of 1985, 1989 and

1993 respectively. These firms contribute to between 90 and 95 percent of Dutch

manufacturing R&D. The major R&D performing firms are included in all years,

ensuring that coverage remains high. The top five firms alone account for approximately

70%, 65% and 60% of manufacturing R&D in 1985, 1989 and 1993 respectively.

Smaller firms – as measured by their contribution to manufacturing R&D – have a

higher probability of exiting the panel due to incidental R&D performance. In fact the

four-yearly extended R&D surveys reflect to some extent a rotating design, because

small firms have higher probability to be replaced by other firms. Firms may also exit

the sample owing to merging or liquidation. Because of the considerable drop out of the

smaller R&D performing firms no attempt was made to construct a panel over the full

period of three years. Instead two different panels are used in the estimation procedures,

labelled PS-RD8589 and PS-RD8993. The nature of the balanced panels may introduce

a selectivity bias in the estimated R&D coefficients. An attempt is made to correct for

this problem by including a selectivity equation in the models.
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Table 1A. Summary Statistics for yearly cross-sections

Year 1985 1989 1993

Mean Q1–Q3
a

Mean Q1–Q3 Mean Q1–Q3

Number of employees 757 100–430 686 102–368 619 85–317

Gross output
b

252  22–128 226  21–131 232 20–102

Value added
b

 71   8– 35  66   7– 36  68  6– 31

Capital per employee
c

 10   5– 13  13   6– 16  16  7– 19

Labour productivity
d

 87  60– 96  92  59– 06  94 57–107

R&D to sales ratio (%)  2.0   0.3–2.7  2.4  0.5–2.9  2.7 0.6–3.1

Number of observations 382 436 347

a
 IQ: inter-quartile range: first and third quartile boundary; 

b
 In million guilders of 1985; 

c
 Depreciation charges per employee in thousand guilders; 

d
 Value added per employee in 1985 prices in thousand guilders.

Table 1B. Summary Statistics for balanced data

Period 1985–1989
a

1989–1993
a

Year 1985 1989 1989 1993

Mean Q1–Q3
b

Mean Q1–Q3 Mean Q1–Q3 Mean Q1–Q3

Number of employees 1,169 124–581 1,158 146–589 1,347 119–589 1,084 119–480

Gross output   380  32–167   393  38–190   414  30–165   348  31–195

Value added   110  10– 55   119  12– 54   133  10– 49   111   9– 63

Capital per employee    11   5– 14    15   7– 17    13   6– 17    16   8– 20

Labour productivity    92  66– 99   106  65–116   103  73–115   114  70–129

R&D to sales ratio (%)    2.6  0.4–3.3    2.7  0.6–3.1    3.1  0.7–3.6    3.4  0.8–4.0

a
 Number of observations for 1985–1989: 209, for 1989–1993: 159. All amounts in constant 1985 guilders; 

b
 IQ: inter-quartile range: first and third quartile boundary.

Table 2. Growth in balanced panels
a

Period 1985–1989
b

1989–1993
b

Mean Median Q1–Q3
c

Min Max Mean Median Q1–Q3 Min Max

Employment 0.2 1.4 –2.6– 4.9  –45 24 –0.5 –0.7 –2.8– 2.5 –23  26

Labour productivity 2.0 1.5 –2.3 –6.8  –65 64  0.5 –0.2 –5.1– 5.5 –36  33

Total factor productivity 0.6 0.1 –1.3– 2.1  –10 26  0.2 –0.2 –1.9– 2.3  –7  11

R&D capital δ d = 0.05 6.3 5.0  3.7– 7.6   –4 48  5.8  4.4  2.7– 7.3  –3  56

R&D capital δ  = 0.15 6.9 5.0  2.8– 9.5  –13 61  5.7  4.0  0.7– 9.2  12  71

R&D capital δ  = 0.25 7.0 5.0  1.9–11.0  –24 69  5.4  3.7  1.1–10.6 –21  79

R&D expenditures 4.7 3.4 –2.6–14.0 –100 90  1.2  0.9 –8.8–13.3 –90 101

a
 Average growth (%) per year (in constant 1985 prices); 

b
 Number of observations for 1985 1989: 209, for 1989 1993: 159; 

c
 IQ: interquartile-range: boundary of the first and third quartile; 

d
 δ = depreciation rate.
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As can be seen from the means and inter-quartile ranges for the balanced panels (table

1B) and the 1985 cross-section, as presented in table 1A, the datasets consist of

relatively large firms. Average firm size in the panel is much larger than the average

firm size for total manufacturing for two reasons: the R&D survey only covers firms

with more than 50 employees and the probability of performing own R&D increases

with firm size. Further, the size distributions within our dataset are very skew, with

means for employment, gross output and value added substantially larger than the third

quartile. The distribution of R&D expenditure is even more skew than for output and

employment. For example the average R&D-sales ratios presented in tables 1A and 1B

are unweighted averages. On a weighted base these ratios are considerably larger:

respectively 4.6%, 6.6% and 6.7% for 1985, 1989 and 1993. This reflects the dominance

of the ’top five’ enterprises, which spend a disproportionately large share of their

worldwide R&D in the Netherlands compared with the domestic share of their

production. The extreme size of these enterprises together with their inordinate share of

R&D indicates why estimates of the return from R&D from industry-level data reveal

little about the effects of R&D for the average firm
 4)

. Idiosyncratic movements in their

research expenditure, such as moving research labs overseas, may greatly affect the

aggregate R&D measure, while not affecting domestic production.  

From table 1B it can also be inferred that the two periods are rather different.

Employment, gross output and value added dropped significantly in the second period.

The turn of the business cycle is more manifest in our dataset because of the impact of

the chemical industry. Chemical firms are overrepresented in our R&D panels. Due to

severe price competition gross output and value added of relatively few but very large

firms producing basic chemicals show a dramatic decrease in the period 1989–1993.

Together with the downsizing of other large R&D performing companies this explains

the picture of aggregate R&D in the second period. A better impression of the dynamics

can be obtained by looking at the distribution of growth rates in both periods. From table

2 it can be inferred that the distributions for R&D expenditure and productivity growth

rates are shifted to the left in 1989–1993. Average labour productivity growth dropped

from 2.0 in 1985–1989 to 0.5 in 1989–1993. Similar patterns are observed for the

decreases of total factor productivity and R&D expenditure. We also have listed growth

rates for R&D capital using different depreciation rates (δ). As can be seen the different

depreciation assumptions have a substantial impact on the shape of the R&D capital

growth rates distributions, but the means and medians remain relatively stable between

the alternatives presented. 

3. Methodology 

The empirical framework for this article will be a production function with R&D

knowledge stock, or R&D intensity, as an additional input. This is a commonly used
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specification to estimate the effects of R&D on productivity (see e.g. Mairesse and

Sassenou, 1991). Starting point is the Cobb-Douglas production function: 

(1)   qit = αit + γkit + Σjβjxjit + εit

where qit is the log of real production of firm i in year t, αit is a firm and time specific

indicator of the level of technology, kit is the (log of) R&D stock of knowledge and the

x’s are the (log) traditional factor inputs belonging to set S, and ε is a normally

distributed error term with mean zero and variance σ2
. The summation in (1) runs over

factor inputs, j ∈ S. If production is measured by value added then S = {C, L}, capital

and labour, and if it is measured by real gross output then the input set is augmented by

materials: S = {C, L, M}. The β’s  and γ are output elasticity parameters to be estimated.

In its present form, equation (1) is not identified and further assumptions regarding the

disembodied technology parameter αit, are needed. For example, if αit = αi + λt, and if a

full panel of firm data over time were available, then a fixed effect estimator of

differenced data, a ’within’ estimator, would provide consistent estimates of the output

elasticities. 

Given that data are only available for 1985, 1989 and 1993, ’within’ estimation is not

possible. The first possibility is to estimate the elasticities from equation (1) under the

assumption that there is a different constant term in each year (αit = λt). The restriction

that the output elasticities are constant over time can also be dropped. The resulting

estimation procedure is then equivalent to estimating a separate cross-sectional equation

for 1985, 1989 and 1993. Using the matched panel, firm-level fixed effects of the form

αit = αi + λt cannot be estimated from (1), but can be eliminated by estimating the

production function in ’long-difference’ form. Taking ’long-differences’ has the

additional advantage that it preserves more variance for the identification of the

parameters than other data transformations (see Griliches and Mairesse, 1995, pp 13).

The long difference form is 

(2)   ∆4 qit = λ + γ∆4 kit + Σβj∆4xjit + µit

where ∆4zit = zi,89 – zi,85 or zi,93 – zi,89 and µit is a newly defined disturbance term

(= ∆4εit). Equation (2) is used in various forms to get estimates of the output elasticities.

A number of alternatives will be discussed in section 4. The issue of how to measure the

relevant R&D variable is explained below.

R&D knowledge stock  

Two related methods have been widely used to assess the effects of R&D on

productivity. The first assumes that R&D expenditure accumulates into a stock of
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knowledge, similar to the formation of capital through investment. This assumption

implies that past R&D continues to have spillover effects on production in the present,

although the effect may diminish over time through depreciation. In estimating this

specification, it is assumed that all firms have the same output elasticity of the

knowledge stock. The alternative specification assumes that there is no depreciation of

the knowledge stock, and in estimating assumes that the rate of return to the R&D

knowledge stock is the same for all firms. 

The first method calculates the R&D stock using the perpetual inventory method (PIM): 

(3)   Kit = Rit + (1−δ)Kit−1

where Kit is the R&D knowledge stock of firm i in year t, Rit represents real R&D

expenditures and δ is the rate of depreciation. The depreciation is supposed to reflect, for

example, the obsolescence of ideas and the reduced profitability of old products as new

ones are created. The magnitude of the depreciation rate is usually chosen in the 15 to 20

percent range (see e.g. Hall and Mairesse, 1995). 

Two problems arise in implementing this method with the available data: R&D

expenditure is observed only in 1985, 1989 and 1993, and no initial R&D knowledge

stock measure is available. Real R&D expenditure for the intervening years is

interpolated using the observed growth rate for each firm. Initial stocks of knowledge,

Ki,85 for the first wave and Ki,89 for the second wave, are created by assuming a

pre-sample R&D expenditure growth rate, g, constant across firms. Then, following Hall

and Mairesse (1995), the initial knowledge stock can be written as:    

(4)   Ki0 = 
Ri0

(g + δ)

Combining this expression into the PIM framework yields the knowledge stock growth

equation: 

(5)   ∆4ki = 1n 







 
(1 − δ)4

(g + δ)
 + ∑(1

s=1

4

 + ri)s(1 − δ)4−s






 + 1n(g + δ)

with ri the growth rate of real R&D expenditure for firm i in the period 1985–1989 or

1989–1993. A range of parameter values for g and δ will be used in order to assess the

sensitivity of the estimated R&D elasticities to different assumptions pertaining to

depreciation and initial stocks. 
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R&D intensity  

The alternative method for estimating the effect of R&D on productivity is the intensity

method, where the rate of return to R&D is assumed to be constant across firms.

Assuming no depreciation (δ = 0), the change in the R&D knowledge stock can be

written as: 

(6)   ∆4Kit = ∑Rio

s=1

4

(1 + ri)
s
.

Using the fact that the marginal product of the R&D stock, ρ, is equal to its output

elasticity times the ratio of output to the R&D stock: 

(7)   ρ ≡ 
∂Qit

∂Qit

 = γ
Qit

Kit

,

Now we can rewrite equation (2) as:

(8)   ∆4qit = λ + γ
Qi0

Ki0
 
∆4Kit

Qi0
 + ∑βj

j∈s

xjit + µit = λ + ρ
∆4Kit

Qi0
 + ∑βj

j∈s

xjit + µit.

In this specification, the R&D intensity variable is computed as the sum of R&D

expenditure from 1986 to 1989 and from 1990 to 1993 divided by output in 1985 and

1989 respectively. The interpretation of ρ is that of the marginal product of a unit of

knowledge stock, which in the absence of depreciation, is the amount by which output

increases with an increase in real R&D expenditure. Although being a different model

than (2) we also estimated equation (8) for two reasons: its ease of interpretation and

because this specification has been frequently applied in related empirical research.  

4. Estimation of R&D contribution 

Cross-sectional estimates 

As a starting point estimates are presented for the output elasticities using a log-linear

Cobb-Douglas production function with R&D capital (equation 1). In this level

specification R&D-capital is proportional to the R&D expenditures (see equation 4).

Both gross output and value added are used as output measures and estimates are

presented for specifications with and without the adjustment for ’double-counting’, the

latter with labour and material inputs containing non-R&D inputs, and value added

measured as gross output minus non-R&D materials. In estimating, all R&D firms that
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could be linked to the production surveys in either year are used and sectoral dummy

intercepts are included.

The sectoral dummies distinguish between four sectors: 1) food, beverages and tobacco,

2) petroleum, chemical industry and allied, 3) metal industries and 4) other industries

(textiles, wearing apparel, paper and paper products and manufacture of building

materials). These groups will be used throughout. 

In estimating the production function in log-levels with panel data, much of the

identification comes from cross sectional variation. Biases in coefficient estimates may

arise owing to fixed effects or endogeneity of inputs, i.e., better firms have elevated

outputs and inputs. Even so, the estimates presented in Table 3A for the traditional

factor elasticities are close to the corresponding factor shares as these should be under

the maintained hypothesis of perfect competition. Further the elasticities add up to about

unity in most cases and constant returns to scale cannot be rejected
 5)

. Contrary to the

results for traditional factor inputs, the estimate for the R&D elasticity does not differ

significantly from zero in the majority of cases. However, the adjustment for ’double

counting’ (see Table 3B) produces some important differences. When the traditional

inputs are adjusted for double counting, the R&D elasticities become significant. This

result confirms predictions by Schankerman (1981) that double counting factor inputs

gives lower estimates of R&D output elasticities. The interpretation for this, on the

assumption that the estimates are accurate, is that total returns to R&D are significantly

positive, but R&D did not provide increases in output above and beyond that predicted

by the traditional factors, i.e. no excess returns. 

Table 3A. Cross-sectional estimates ’log-level’ specification not adjusted for double-counting

Dependent variable Gross output Value added

Year 1985 1989 1993 1985 1989 1993

Coefficient of

Labour .136 .145 .189 .570 .626 .755

(.013) (.014) (.019) (.036) (.042) (.067)

Material inputs .769 .750 .727

(.010) (.010) (.013)

Capital .080 .103 .085 .365 .352 .253

(.009) (.010) (.013) (.025) (.031) (.049)

R&D .009 .003 .012 .041 .026 .035

(.006) (.005) (.006) (.018) (.018) (.026)

SIC dummies
a

yes yes yes yes yes yes

N of observations  382  436  347  382  436  347

R
2

.992 .990 .990 .911 .882 .826

a)
 SIC-dummies for four groups:

 1)
 food, beverages and tobacco,

 2)
 petroleum, chemical industry and allied, 

3)
 metal industries

and
 4)

 other industries (textiles, wearing apparel, paper and paper products and manufacture of building materials).
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’Long difference’ estimates  

A disadvantage of estimating ’log-level’ specifications is that they have not been

controlled for fixed effects. If these effects are correlated with other explanatory

variables, then the cross-sectional estimates are not consistent. This problem can be

solved by using differenced series. However, by differencing the data measurements

errors are exacerbated. This pitfall can be circumvented by estimating ’long difference’

equations, which relate growth of output to growth of factor inputs over some years. The

introduction of the time dimension may, however, worsen the simultaneity problem.

Before treating this issue further, we first present several variants of ’long-difference’

growth equations. 

R&D knowledge stock approach  

Estimates for the ’long difference’ equations are presented in Table 4. All firms for

which two adjacent observations were available in the four-yearly R&D surveys are

included. The growth of the R&D knowledge stock is calculated according to (5), using

a pre-sample R&D growth of 5% and a depreciation rate of 15%. Estimates are

presented for the two panels separately and for the pooled data. In the pooled estimates

an extra dummy intercept is included. This time dummy represents a mixture of time

and population effects. The data are adjusted for double-counted R&D inputs. Further,

we distinguish between estimates for the gross output and the value added specification. 

Table 3B Cross-sectional estimates ’log-level’ specification adjusted for double-counting

Dependent variable Gross output Value added

Year 1985 1989 1993 1985 1989 1993

Coefficient of

Labour .134 .142 .174 .552 .602 .700

(.012) (.013) (.013) (.035) (.039) (.063)

Material inputs .763 .740 .723

(.010) (.010) (.013)

Capital .081 .105 .090 .362 .347 .269

(.010) (.010) (.013) (.025) (.030) (.048)

R&D .018 .015 .024 .068 .059 .076

(.006) (.005) (.006) (.017) (.017) (.025)

SIC dummies
a

yes yes yes yes yes yes

N of observations  382  436  347  382  436  347

R
2

.992 .990 .990 .914 .889 .833

a)
 SIC-dummies for four groups:

 1)
 food, beverages and tobacco, 

2)
 petroleum, chemical industry and allied,

 3)
 metal industries

and
  4)

 other industries (textiles, wearing apparel, paper and paper products and manufacture of building materials).
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The results show two major differences from the ’log-level’ specifications of Tables 3A

and 3B. First, the output elasticities for labour increase at the expense of the capital

output elasticities. With the exception of the pooled estimates the capital elasticity even

becomes insignificant. Secondly, the elasticity of the R&D knowledge stock is more

than doubled when one controls for ’permanent’ differences across firms. The results

suggest that both the traditional and the R&D capital variable are strongly correlated

with firm effects. Further, Table 4 shows that the estimates for R&D stock elasticities for

1989–1993 are insignificant. 

R&D intensity approach 

Next estimates are made of the rate of return to R&D under the assumption of zero

depreciation of the R&D knowledge stock and a marginal rate of return to R&D

common to all firms. Here, as mentioned above, we replace ∆4ki by the appropriate

R&D intensity by estimating equation (8). The coefficient of the R&D intensity variable

can be interpreted as the gross marginal private rate of return to R&D. The results are

presented in Table 5. As can be seen from a comparison with Table 4, imposing the

constraint δ = 0 has only minor effects on the pattern of parameter estimates for the

traditional inputs. According to these estimates the gross rate of return to R&D is

insignificantly different from zero in the gross output specification and about 20 percent

in the value added specification. The 1989–1993 period has a lower rate of return than

the earlier period, although the differences are not statistically significant.

Table 4. Estimates R&D contribution for ’long-difference’ specifications

Dependent variable Gross output Value added

Year 85–89 89–93 Pooled 85–89 89–93 Pooled

Coefficient of

Labour .196 .222 .205 .780 .700 .752

(.037) (.052) (.030) (.125) (.139) (.092)

Material inputs .718 .689 .705

(.025) (.032) (.019)

Capital .024 .031 .030 .083 .105 .095

(.019) (.027) (.015) (.069) (.083) (.052)

R&D capital .074 .028 .051 .247 .104 .179

(.023) (.026) (.017) (.083) (.080) (.057)

Period dummy .123  –.764

SIC dummies yes yes yes yes yes yes

N of observations  209  159  368  209  159  368

R
2

.903 .867 .890 .329 .227 .299
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5. Robustness tests 

A striking difference between the estimates for the ’log-level’ specifications of table 3B

and the estimates for the ’long-difference’ equations (Table 4) is that the coefficients for

the R&D variables are higher in the ’long difference’ estimates than in the ’log-level’

estimates, whereas the opposite applies to the elasticity estimates for the traditional

inputs. There are several possible candidates for explaining the observed change in the

patterns of the parameter estimates when switching from the cross-sectional to the time

series dimension of the data. Plausible candidates are the measurement related issues

such as the assumptions underlying the construction of the R&D knowledge stocks and

the selectivity of the R&D data set. Furthermore, our data show heteroskedasticity in the

error terms related to the R&D variables used in the equations. Also the simultaneity

problem may be more manifest when estimating ’long difference’ equations. In this

section we pay attention to the robustness of the results, to the assumptions underlying

the calculation of the growth of the R&D knowledge stock variable, to selectivity and to

the problems of heteroskedasticity and simultaneity. We first discuss the way in which

several sources of biases were dealt with and lastly we present the results of the

robustness tests, focusing on the estimates of the R&D variables and the elasticity of

traditional capital inputs.   

Table 5. Estimates R&D intensity equations

Dependent variable Gross output Value added

Year 85–89 89–93 Pooled 85–89 89–93 Pooled

Coefficient of

Labour .216 .223 .215 .838 .677 .771

(.038) (.052) (.030) (.124) (.139) (.091)

Material inputs .719 .693 .707

(.027) (.032) (.020)

Capital .024 .032 .030 .069 .101 .085

(.020) (.027) (.015) (.069) (.083) (.052)

R&D intensity .052 –.004 .030 .218 .173 .192

(.061) (.079) (.048) (.085) (.082) (.059)

Period dummy .083 –1.032

(.032) (1.088)

SIC dummies yes yes yes yes yes yes

N of observations  209  159  368  209  159  368

R
2

.898 .866 .990 .321 .241 .301
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Depreciation and pre-sample growth for the R&D knowledge stock  

With respect to the measurement related problems we first look at the construction of the

R&D knowledge stock. A robustness test was performed by applying various

assumptions for the depreciation parameter and the R&D pre-sample growth rate. The

results of similar previous studies suggest that the estimates for the output elasticities of

the R&D stock are rather robust to different assumptions concerning the rate of

depreciation, δ. However, these results are based on balanced firm-level time series data

with longer R&D histories. Given that the construction of data on the growth of the

R&D stock – in essence – rests on only two observations for R&D expenditure, the

elasticities presented in Tables 3 to 5 may be dependent on the choice of δ and the

pre-sample growth g in formula 5. For this reason equation (2) is re-estimated using

three alternative assumptions for δ (0.10, 0.15 and 0.20) and three assumptions for

pre-sample R&D growth, g (0.03, 0.05, 0.07). The results of this robustness test show

that the R&D output elasticities only slightly decline with increasing δ and with

increasing g. Overall, the output elasticities seem to be rather robust to different

assumptions with respect δ and g. For this reason and for reasons of space we shall not

present the estimates for this robustness test (see Bartelsman et al. (1996) for more

details). 

Selectivity  

In section 2 it was shown that in constructing the panel data, sample attrition was a

possible cause of selectivity biases in regression results. Some elements of selectivity are

inherent in the use of the R&D surveys, because the probability of exit decreases with

the R&D intensity, which is our variable of interest. For this reason, the estimated R&D

contribution to productivity growth could be biased. Selectivity can be taken into

account by extending our models with a selection equation which models the probability

of continuing in the sample. Several approaches are possible to capture the effects of

selectivity. We could follow Heckman’s two-step method by including a correction term

in the regression equations. A more efficient estimate can be obtained with the so-called

Tobit model. Assuming that  the probability of being selected in the sample depends on

the level of the R&D intensity in the first year, the Tobit model reads as: 

(9A) ∆4qit = λ + γ∆4kit + Σj∈sβj∆4xjit + µit

or

∆4qit = λ + ρ 
∆4Kit

Qi0
 + ∑βj

j∈s

∆4xjit + µit      if D = 1
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(9B) ∆4 qit not observed           if D = 0,

with selection equations 

(10A) D = 1    if   c + α
Ri0

Qi0
 + ηit > 0

(10B) D = 0    if   c + α
Ri0

Qi0
 + ηit ≤ 0,

where 
Ri0

Qi0

 is the R&D intensity in the starting year, c a constant term and ηit a Gaussian

disturbance term. 

In using the Tobit model the number of observations differ from those given for the

matching specifications in tables 4 and 5, because firms which are in production survey

samples but not in the R&D dataset in the end year are also included in the analysis. 

Heteroskedasticty and simultaneity  

Other possible biases in the ’long difference’ estimates can arise due to

heteroskedasticity and simultaneity. Indeed, the Goldfeld-Quandt test for

heteroskedasticity indicates a significantly higher residual variance for firms with the

lowest growth rates in the R&D stock than for firms with the highest growth rates
6)

. In

the robustness tests we corrected for heteroskedasticity by applying weighted least

squares with weights equal to the square root of the R&D variables. The possible biases

due to simultaneity caused by the producers’ joint decisions on inputs and outputs was

investigated by using the Partial Total Productivity (labelled P-TFP) form for the

productivity equation (see Bartelsman et al. (1996) for a detailed explanation of this

approach). 

Results of the robustness tests  

The results for the different robustness tests applied to the pooled data are presented in

Tables 6 and 7. Table 6 gives the elasticity estimates for R&D and traditional capital for

the specifications with the growth of the R&D knowledge stock as the explanatory R&D

variable. Table 7 gives the same estimates for the R&D intensity specifications, using

the pooled results of Table 5 as a reference. The base case of Table 6 is represented by

the pooled estimates of Table 4. WLS estimates are not given for the gross output

specification because the relevant Goldfeld-Quandt statistics did not indicate

heteroskedasticity for this specification.  
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Further P-TFP estimates are not presented for the gross output specification because the

P-TFP approach starts from a value added specification. 

Two conclusion can be drawn from Table 6. First when relating output growth to the

growth of the R&D knowledge stock, the selectivity and the simultaneity bias seem to

be rather small. Correcting for selectivity raises the R&D output elasticity for both

specifications, but the difference compared with the base case is statistically

insignificant. Secondly, simultaneity seems not to be an important source of bias for this

specification either: the elasticity estimate for the P-TFP variant also does not differ very

much from the base case estimate. However, correcting for heteroskedasticity makes

quite a difference. Applying WLS reduces the estimates of the R&D capital elasticities

and also restores the pattern of the two capital elasticity estimates found for the ’log-

level’ specifications of Table 3B, with the elasticity of the traditional capital input higher

than that for the R&D capital input. 

Lastly, Table 7 presents the results of the robustness test for the estimates of the rates of

return to R&D, with the base case represented by the estimates of Table 5. Again the

comparisons aim at assessing the importance of biases due to selectivity (both for the

gross output and value added specifications) and heteroskedasticity (for the value added

specification) 
7)

. However, the pattern of results differ from that presented in Table 6.

Selectivity seems to be an equally important bias as heteroskedasticity. Modelling the

presence in the sample being dependent on the level of R&D doubles the rate of return

for the gross output specification and also increases the rate of return to R&D in case of

the value added specification by more than ten percent. The latter result is also obtained

after correcting the base case estimates for heteroskedasticity in the R&D intensity

measure, leading to an estimate for the gross rate of return to R&D close to 0.30. 

Table 6. Robustness tests R&D stock approach on pooled data

Dependent variable Gross output Value added

Coefficient of R&D capital Ordinary Capital R&D capital Ordinary Capital

Base LD .051 .030 .179 .095

(0.17) (0.15) (0.57) (0.52)

Selectivity LD .061 .038 .226 .095

(.022) (0.17) (.080) (.045)

Simultaneity LD   x  x .190 .098

(.064) (.043)

Heteroskedasticity LD   x  x .070 .269

(.039) (.054)

Heteroskedasticity +   x  x .077 .304

Simultaneity LD (.039) (.045)
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6. Summary and conclusions 

In a first attempt to estimate the contribution of R&D to productivity growth using

firm-level data for the Netherlands, several variants of production functions with R&D

as a separate input have been analysed. The  main objective was to estimate the private

returns to R&D and output elasticities of the stock of R&D knowledge capital. The data

derive from the four-yearly extended R&D surveys for 1985, 1989 and 1993. These

surveys were linked to the production surveys. In using firm-level data it became

possible to circumvent the specific problems which arise when using aggregated R&D

data for the Dutch manufacturing industry. These problems are related to the very skew

distribution of manufacturing R&D due to the dominance of few multinational

enterprises. The variants of the basic R&D augmented production functions were made

along different dimensions. First corrections were made for double- counting of R&D

inputs. This correction increased the R&D output elasticity estimate for the ’log-level’

value added specification by about 5 percentage points. Next ’long-difference’ estimates

were presented, both for output elasticities and rates of return to R&D. The

’long-difference’ specifications correct for biases from firm fixed effects. Subsequently,

the ’long-difference’ specifications of the R&D augmented production function were

used as a base case to assess the importance of other sources of biases in the R&D

estimates. The R&D elasticities appeared to be relatively insensitive to different

assumptions concerning the depreciation rate and pre-sample growth in R&D

expenditure and also to simultaneity due to the joint decision on inputs and outputs.

Selectivity appeared to be an important source of bias for the estimation of the gross rate

of return to R&D, but not so when estimating elasticities of R&D capital. In both cases

heteroskedasticity of the error terms related to the R&D measures seems to be an equally

important source of bias. Cutting through all the specifications the output elasticity for

R&D capital is about 6 percent for gross output and about 8 percent for value added,

while the private rate of return to R&D varies between 12 percent for gross output and

30 percent for value added. 

Table 7 Robustness tests R&D intensity approach on pooled data

Dependent variable Gross output Value added

Coefficient of R/Q Ordinary Capital R/Y Ordinary Capital

Base LD .030 .030 .192 .085

(0.48) (0.15) (0.59) (0.52)

Selectivity LD .124 .025 .314 .085

(.058) (0.17) (.078) (.060)

Heteroskedasticity LD   x  x .348 .276

(.154) (.041)
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Notes

1) 
R&D surveys were also conducted for the intervening years, but only for the largest

R&D performing firms. The 1985, 1989 and 1993 surveys are more representative,

and provide a more adequate sample size after linking with the production statistics. 
2) 

SIC: Standard Industrial Classification of Statistics Netherlands; the 3-digit-level

allocates industrial firms to 122 groups. 
3) 

The industry groups are: food, beverages and tobacco (SIC 20,21), chemical industry

and allied (SIC 28–31), metal industry (SIC 33–38) and other manufacturing (SIC

22–27, 32 and 39). 
4) 

For instance in 1989 the ’top five’ firms had 15 percent of their employees working in

R&D but their labour productivity was about the same as the rest of the firms in the

panel. 
5) 

At the 90% significance level the hypothesis of constant returns to scale is rejected in

favour of slightly increasing returns to scale for the 1993 value added specifications. 
6) 

The Goldfeld-Quandt test statistics is computed based on residual variances for the

first and forth quartiles of firms for the distribution of the R&D stock growth. For

instance for δ = 0.15 the test statistics were 3.151 for 1985–1989 at a critical value of

1.60. 
7) 

The Goldfeld-Quandt test also indicates that heteroskedasticity is absent for the gross

output R&D intensity specification. Furthermore simultaneity appears to be an

insignificant source of bias for the value added specification, also when using the

R&D intensity measure as the explanatory R&D variable. 
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